Can Quantum Chaos Link to the Riemann Hypothesis Through Helmholtz Equations?

  • Thread starter Thread starter mathrock79
  • Start date Start date
  • Tags Tags
    Helmholtz equation
mathrock79
Messages
3
Reaction score
0
dear friends :)

"Classical and noncllasical symetries for helmholtz equation" help help.
 
Physics news on Phys.org
what specific problem are you stuck on? I've just done a module on he Helmholtz equation which i aced. il be happy to help.

xxxx Gareth
 
By far, the most active area of research linking QM and number theory is the work concerning the 'spectral interpretation' of the Riemann zeta zeros, suggesting a possible approach to the Riemann hypothesis involving quantum chaos.

We address the problem of constructing positive operator-valued measures (POVMs) in finite dimension n consisting of n2 operators of rank one which have an inner product close to uniform. This is motivated by the related question of constructing symmetric informationally complete POVMs (SIC-POVMs) for which the inner products are perfectly uniform. However, SIC-POVMs are notoriously hard to construct and despite some success of constructing them numerically, there is no analytic construction known. We present two constructions of approximate versions of SIC-POVMs, where a small deviation from uniformity of the inner products is allowed. The first construction is based on selecting vectors from a maximal collection of mutually unbiased bases and works whenever the dimension of the system is a prime power. The second construction is based on perturbing the matrix elements of a subset of mutually unbiased bases. Moreover, we construct vector systems in $\C^n$ which are almost orthogonal and which might turn out to be useful for quantum computation. Our constructions are based on results of analytic number theory.

Some useful notes a friend lent me, and that i never gave back...

xxxx Gareth
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top