Can You Evaluate the Cross Product in Vector Integral Calculations?

jegues
Messages
1,085
Reaction score
3

Homework Statement


See figure


Homework Equations





The Attempt at a Solution



For an integral like this am I allowed to evaluate the cross product between the to vectors,

\vec{u} and \vec{v}?

If so then,

\vec{p} = \vec{u}\times\vec{v}

and,

\int f\vec{p} = -3\int t\vec{p}

Does this work?
 

Attachments

  • VECTORF.JPG
    VECTORF.JPG
    11.7 KB · Views: 388
Physics news on Phys.org
under what conditions should you think you cannot?
 
Yes, it is always true that \left(a\vec{u}\right)\times\vec{v}= a\left(\vec{u}\times\vec{v}\right).

(But \vec{u}\times\left(a\vec{v}\right)= -a\left(\vec{u}\times\vec{v}\right).)
 
HallsofIvy said:
Yes, it is always true that \left(a\vec{u}\right)\times\vec{v}= a\left(\vec{u}\times\vec{v}\right).

(But \vec{u}\times\left(a\vec{v}\right)= -a\left(\vec{u}\times\vec{v}\right).)

So,

\int f\vec{p}dt = -3\int t\vec{p}dt = \int \left(-3t^{3} - 3t\right)dt\hat{i} + \int \left(-6t^{2} + 3t\right)dt\hat{j} + \int \left(6t + 3t^{4} \right)dt\hat{k}

then,

\int f\vec{p}dt = -3\int t\vec{p}dt = \left(\frac{-3}{4}t^{4} - \frac{3}{2}t^{2} \right)\hat{i} + \left( -2t^{3} + \frac{3}{2}t^{2} \right)\hat{j} + \left( 3t^{2} + \frac{3}{5}t^{5} \right)\hat{k} + C

Is this correct?
 
HallsofIvy said:
Yes, it is always true that \left(a\vec{u}\right)\times\vec{v}= a\left(\vec{u}\times\vec{v}\right).

(But \vec{u}\times\left(a\vec{v}\right)= -a\left(\vec{u}\times\vec{v}\right).)

what about when a = 1...

may be missing somethig, but I'd say \vec{u}\times\left(a\vec{v}\right)= a\left(\vec{u}\times\vec{v}\right), if you change the order of u & v that's another story
 
Last edited:
Bump, still looking for a quick check on my answer.
 
HallsofIvy said:
Yes, it is always true that \left(a\vec{u}\right)\times\vec{v}= a\left(\vec{u}\times\vec{v}\right).

(But \vec{u}\times\left(a\vec{v}\right)= -a\left(\vec{u}\times\vec{v}\right).)

lanedance said:
what about when a = 1...

may be missing somethig, but I'd say \vec{u}\times\left(a\vec{v}\right)= a\left(\vec{u}\times\vec{v}\right), if you change the order of u & v that's another story
Yes, you are right. For some reason, I was thinking \vec{u}\times(a\vec{v})= -((a\vec{v})\times\vec{u}= -a(\vec{v}\times\vec{u}) but now we have to swap u and v back again!

(a\vec{u})\times\vec{v}= \vec{u}\times(a\vec{v})= a(\vec{u}\times\vec{v})
 
Bump, still looking to see if the route I took is the right one.
 
What part of "yes", in the second response, do you have trouble with?
 
  • #10
HallsofIvy said:
What part of "yes", in the second response, do you have trouble with?

I was just curious whether or not I had done the integration correctly, that's all.
 
  • #11
jegues said:
So,

\int f\vec{p}dt = -3\int t\vec{p}dt = \int \left(-3t^{3} - 3t\right)dt\hat{i} + \int \left(-6t^{2} + 3t\right)dt\hat{j} + \int \left(6t + 3t^{4} \right)dt\hat{k}

then,

\int f\vec{p}dt = -3\int t\vec{p}dt = \left(\frac{-3}{4}t^{4} - \frac{3}{2}t^{2} \right)\hat{i} + \left( -2t^{3} + \frac{3}{2}t^{2} \right)\hat{j} + \left( 3t^{2} + \frac{3}{5}t^{5} \right)\hat{k} + C

Is this correct?

Yep, that's right. Just make sure your C is a constant vector, not a real number constant.
 
Back
Top