First of all, the amount \Delta l of the spring's deformation can be related with the positions x_1,x_2 of the disc. At any instance of time the length of the spring is L=x_2-x_1. If we assume that the spring is stretched then we have \begin{equation}\Delta l=L-L_0\Rightarrow \Delta l=x_2-x_1-L_0 \end{equation}.
Returning to the the diss, if each disc is homogenous then its moment of inertia about an axis perpendicular to the disc passing through it's center is I_C=\frac{1}{2}mR^2. When a disc is rolling without slipping we have a_{CM}=R\,\alpha.
Thus for a rolling without slipping 2nd disc, Newton's second law reads
\Sigma\tau=I_C\,\alpha\Rightarrow f\,R=\frac{1}{2}mR^2\,\alpha\Rightarrow f=\frac{1}{2}mR\,\alpha \Rightarrow f=\frac{1}{2}m\,a_{CM} and
\Sigma F=m\,a_{CM}\Rightarrow -k\,\Delta l-f=m\,a_{CM}
where f stands for the friction which is requiried for the rotation.
Adding the two equations we arrive to
-k\,\Delta l=\frac{3}{2}\,m\,\ddot{x}_2 \quad (2)
Likewise for the1st disc we arrive to
k\,\Delta l=\frac{3}{2}\,m\,\ddot{x}_1 \quad (3)
Adding equations (2),(3) we have
m_1\,a_1+m_2\,a_2=0\Rightarrow m_1\,\dot{x}_1+m_2\,\dot{x}_2=-m_1\,v_0+2\,m_2\,v_0 \,(conservation\, of\, momentum) \Rightarrow m_1\, x_1+m_2\,x_2=(m_1\,v_0+2\,m_2\,v_0 )\,t+2\,m_2\,L_0 \quad (4)
With the help of (1) and (4) we can express \Delta l with respect to x_1 or x_2, e.g.
\Delta l=(1+\frac{m_2}{m_1})\,x_2+(1-2\,\frac{m_2}{m_1})\,v_0\,t-(1+2\,\frac{m_2}{m_1})\,L_0 \quad (5)
Plugging (5) into (2) we can compute x_2(t), and from (4) we have x_1(t). The results are
x_1(t)=-\frac{m_2\,L_0}{m_1+m_2}\,(\-1 + \cos \frac{{\sqrt{3}}\,t\,{v_o}}{{L_o}} + <br />
{\sqrt{3}}\,\sin \frac{{\sqrt{3}}\,t\,{v_o}}{{L_o}})-\frac{ {m_1} - 2\,{m_2} }<br />
{{m_1} + {m_2}}\,{v_o} \,t
x_2(t)=\frac{m_1\,L_0}{m_1+m_2}\,(\-1 + \cos \frac{{\sqrt{3}}\,t\,{v_o}}{{L_o}} + <br />
{\sqrt{3}}\,\sin \frac{{\sqrt{3}}\,t\,{v_o}}{{L_o}})-\frac{ {m_1} - 2\,{m_2} }<br />
{{m_1} + {m_2}}\,{v_o} \,t +\frac{2\,m_2\,L_0}{m_1+m_2}
Hope, I helped!