Can you help me to finish up this question?

  • Thread starter Thread starter omega16
  • Start date Start date
omega16
Messages
20
Reaction score
0
Consider Q[sqrt(2)].
Does every element of Q[sqrt(2)] have a square root in Q[sqrt(2)] ?
Prove if true, and give a counterexample if false.My solution:
sqrt(sqrt(2)) = a + bsqrt(2)

if I square both sides then I will have :

sqrt(2) = (a + b*sqrt(2))^2
= a^2 + 2ab*sqrt(2) + 2b^2

=======================
I think the answer should be false. Am I right?

If I am right. Can you suggest me a counterexample. Thank you very much.

If I am wrong. Please correct me. Thanks
 
Physics news on Phys.org
Well you're almost done. You need to show no such a and b will work.
 
How about -1?
 
Last edited:
sqrt(2) = a^2 + 2ab*sqrt(2) + 2b^2
= (a^2+ b^2)+ 2ab sqrt(2),
Since every number in Q(sqrt(2)) can be written uniquely as "x+ ysqrt(2)" for rational x, y, what does that tell you about a and b?
 
Thank you very much for your opinion. I have solved this question.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top