Can You Help With Finite Element Analysis in Cylindrical Coordinates?

colinven
Messages
10
Reaction score
0
I am trying to numerically calculate the electric potential inside a truncated cone using the finite element method (FEM). The cone is embedded in cylindrical coordinates (r,phi,z). I am assuming phi-independence on the potential, therefore the problem is essentially 2D; I am working only with coordinates (r,z).

I know how to do FEM in 2D using cartesian coordinates. Do any of you know how to do FEM in 3D using cylindrical coordinates; with a domain that is essentially 2D?
 
Physics news on Phys.org
I am not sure if this would work, but here is the idea: Consider a vertical cross-section of the cone. It will look like a triangle. The solution on the left side of the triangle will be the same as on the right, so consider just the right side. This triangle has coordinates that look just like Cartesian x,y coordinates, except with x replaced by r and y replaced by z. Your differential equation will not have any ## \phi ## dependence. So treat it just like the Cartesian 2D case that you already know how to solve. Set up a triangular FE grid, use the 2D hat functions, etc.
 
You need to transform your equations from 2d Cartesian to 2d cylindrical, taking care on all the differential operators (not sure what equations you're using). You can then discretise these using conventional finite element techniques (e.g galerkin or similar). Note: Cartesian xy will yield different solutions to rz
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top