Capacitance of a spherical capacitor

AI Thread Summary
The discussion focuses on calculating the capacitance of a spherical capacitor with a dielectric material between its plates. The user explores the use of Gauss's law, noting that the permeability varies within the capacitor, with free space in the inner region and a relative permeability in the dielectric. They suggest using a Gaussian surface within the dielectric to derive the electric field and subsequently the voltage difference between the plates. The final capacitance formula derived is C = 4πε₀εᵣ(R₂R₁)/(R₂-R₁), confirming the calculations are correct. The approach effectively combines principles of electrostatics and dielectric materials in capacitor design.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
A spherical capacitor is formed by two thin conductive layers, spherical and concentric, of radius [itex] R_1 [/itex] and [itex] R_2>R_1 [/itex], between which we have placed a dielectric material of relative permittivity [itex] \varepsilon_r [/itex]. Knowing that the inner layer has an [itex] Q [/itex] charge, idetermines the capacity of the capacitor and the total energy stored.
Relevant Equations
Gauss Law
When I try to do Gauss, the permeability is not always that of the free space, but it varies: up to a certain radius it is that of the void and then it is the relative one. How can I relate them? I'm trying to calculate the capacity of a spherical capacitor.

The scheme looks like this: inside I have the free space and between the plates of the capacitor I have the dielectric material.
67D98992-D759-4157-BF39-9E70AA815294.jpeg


The broken lines represent the Gaussian surface.
 
Physics news on Phys.org
What is the result if it were space ( ε0) between the spherical shells?
 
The vacuum doesn't matter because it contains no charge. The capacitor consists of two conducting plates with the space between them filled completely with the dielectric. Use a Gaussian surface completely inside the dielectric. Or you can find the capacitance with no dielectric between the shells and then multiply it by the dielectric constant.
 
I think I have the solution. Is that right?
<br /> \left.<br /> \phi =\oint \vec{E}\cdot d\vec{S}=\oint E\cdot dS\cdot \underbrace{\cos 0}_1=E\oint dS=E\cdot S \atop<br /> \phi =\dfrac{Q_{enc}}{\varepsilon_0 \varepsilon_r}=\dfrac{Q}{\varepsilon_0 \varepsilon_r}=\dfrac{\sigma \cdot S}{\varepsilon_0 \varepsilon_r}<br /> \right\} E\cdot S=\dfrac{\sigma S}{\varepsilon_0 \varepsilon_r}\rightarrow E=\dfrac{\sigma}{\varepsilon_0 \varepsilon_r}=\dfrac{Q}{4\pi R^2 \varepsilon_0}<br />
C=\dfrac{Q}{V_2-V_1}
V_2-V_1=-\int_{R_1}^{R_2} \vec{E}\cdot d\vec{l}=-\int_{R_1}^{R_2}E\cdot \overbrace{dl\cdot \cos \theta}^{dR}=-\int_{R_1}^{R_2}\dfrac{Q}{4\pi R^2 \varepsilon_0 \varepsilon_r}dR=\dfrac{Q}{4\pi \varepsilon_0 \varepsilon_r}-\int_{R_1}^{R_2} \dfrac{1}{R^2}dR
because Q is constant as it has been transferred to us by an external field/generator. Therefore, it is invariant. V varies due to distance. Then
V_2-V_1=\dfrac{Q}{4\pi \varepsilon_0 \varepsilon_r}\left( -\dfrac{1}{R_2}+\dfrac{1}{R_1}\right) \rightarrow C=\dfrac{4\pi \varepsilon_0}{\left( -\frac{1}{R_2}+\frac{1}{R_1}\right)}=\boxed{4\pi \varepsilon_0 \varepsilon_r\dfrac{R_2R_1}{R_2-R_1}}
 
That looks about right.
 
  • Like
Likes Guillem_dlc
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top