Cartesian to polar unit vectors + Linear Combination

Christina909
Messages
2
Reaction score
0
I've been trying to solve this question all day. If somebody could point me in the right direction I would really appreciate it!

(ii) A particle’s motion is described by the following position vector r(t) = 4txˆ + (10t − t)ˆy Determine the polar coordinate unit vectors ˆr and ˆθ for r. [4]

v(t) is given as: v(t) = 4xˆ + (10t − 1)ˆy
(iv) Using the ˆr and ˆθ you found in (ii) above, write v(t) as a linear combination of rˆ and ˆθ. [4]

(v) Differentiate the expression for r(t) you got in part (ii) (in terms of ˆr and ˆθ, and using the expressions ˙rˆ = ˙θ ˆθ , ˙ˆθ = − ˙θrˆ derived in the lectures, show that you obtain the same answer as in part (iv)

I understand that for θ^ = -sinθ + cosθ and r^=sinθ + cos θ I'm just unsure how to do part (ii) without it being really messy e.g with cos(tan^-1(10t-1/4)) where tan^-1(10t-1/4)=θ especially knowing I have to find a linear combination afterwords.

The attempt at a solution
My current answer for part (ii):
r^= cos(tan^-1(10t-1/4))x^ + sin(tan^-1(10t-1/4))y^
θ^= -sin(tan^-1(10t-1/4))x^ + cos(tan^-1(10t-1/4))y^

And for part (iv) am I am right in saying that I need to find, a and b scalars for the following:
4 = a*cos(tan^-1(10t-1/4)) +b*-sin(tan^-1(10t-1/4))
10t-1 = a*sin(tan^-1(10t-1/4))+b*cos(tan^-1(10t-1/4))

I'm really not sure about this one. It appears like it's going to difficult to eliminate the t value.
Anyway, thanks in advance, I'm going to keep working on it now.
 
Physics news on Phys.org
Christina909 said:
A particle’s motion is described by the following position vector r(t) = 4txˆ + (10t − t)ˆy Determine the polar coordinate unit vectors ˆr and ˆθ for r. [4]

v(t) is given as: v(t) = 4xˆ + (10t − 1)ˆy
I am pretty sure there's at least one typo here. Why would anybody specify (10t - t)y?
 
Yes that was a typo, sorry.
But when I say y^ -'y' hat (Or ^y - the typo) I mean it as the component, and it's the same with the others, it was just a formatting error
 
Hi. This all seems a bit confusing, partly because of notation and possible typos... (What's the correct r(t) you are given, by the way?)
Now regardless of that, you seem to have taken a wrong track in the beginning. So to avoid the hats I'm going to define: r-hat = er ; θ-hat = eθ , and: x-hat = ex ; y-hat = ey

You know that in polar coordinates (because you mention it at some point):
er = cosθ ex + sinθ ey , eθ = –sinθ ex + cosθ ey , and this is always true.
You also know that: cosθ = x/r = x⋅(x2+ y2)–1/2, and: sinθ = y/r = y⋅(x2+ y2)–1/2 ,
And this is also always true.
Now you are given an expression: r(t) = x(t) ex + y(t) ey,
So what does all that make of er and eθ?
 
Christina909 said:
Yes that was a typo, sorry.
But when I say y^ -'y' hat (Or ^y - the typo) I mean it as the component, and it's the same with the others, it was just a formatting error
I think the typo referred to was writing the y-component as ##10t-t##. Why not simply write it as ##9t##? Plus it's inconsistent with what you later said was the y-component of the velocity, ##10t-1##. That's not the derivative of ##10t-t##.
 
r(t) = 4txˆ + (10t − t)ˆy Determine the polar coordinate unit vectors ˆr and ˆθ for r. [4]

v(t) is given as: v(t) = 4xˆ + (10t − 1)ˆy

Chris, can you clear this up ?

Either

##\vec r(t) = 4t\hat x + (10 t^2 - t )\hat y\ \ ##, but then ##\vec v(t) = 4\hat x + (20 t - 1)\hat y##,

or

##\vec v(t) = 4\hat x + (10 t - 1)\hat y\ \ ## and then ##\vec r(t) = 4t\hat x + (5 t^2 - t )\hat y##.Unless, of course, there is more than one typo harassing us...
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top