Cauchy.riemann integral theorem or formula

Click For Summary
SUMMARY

The discussion centers on the application of Cauchy's integral theorem and formula in complex analysis, specifically regarding the function \( f(z) = \frac{1}{z} \). When the function is holomorphic within a closed convex curve that does not enclose the pole at \( z = 0 \), the integral evaluates to zero, as stated by Cauchy's theorem. Conversely, if the pole is enclosed by the curve, the Residue Theorem must be applied to evaluate the integral correctly. The participants clarify the implications of holomorphic functions and poles in the context of Cauchy's theorems.

PREREQUISITES
  • Understanding of complex analysis concepts, particularly holomorphic functions
  • Familiarity with Cauchy's integral theorem and formula
  • Knowledge of poles and their significance in complex functions
  • Basic understanding of the Residue Theorem
NEXT STEPS
  • Study the proof of Cauchy's Theorem in detail
  • Learn about the Residue Theorem and its applications in complex integration
  • Explore examples of holomorphic functions and their integrals over closed curves
  • Investigate the implications of poles in complex analysis
USEFUL FOR

Students and professionals in mathematics, particularly those specializing in complex analysis, as well as educators seeking to deepen their understanding of Cauchy's integral theorem and its applications.

aruwin
Messages
204
Reaction score
0
How do I start this question? Do I use Cauchy.riemann integral theorem? or Cauchy.riemann integral formula?
 

Attachments

  • 6-1.jpg
    6-1.jpg
    39.5 KB · Views: 92
Physics news on Phys.org
Note that in the first case the function (which is $\frac{1}{z}$) is holomorphic everywhere inside the circle of radius $1$ centered at $2i$, since it has a single pole at $z = 0$ which is outside this circle. What does that imply?

In the second case, the pole is inside the circle. What does Cauchy's integral theorem say in this case?
 
Bacterius said:
Note that in the first case the function (which is $\frac{1}{z}$) is holomorphic everywhere inside the circle of radius $1$ centered at $2i$, since it has a single pole at $z = 0$ which is outside this circle. What does that imply?

In the second case, the pole is inside the circle. What does Cauchy's integral theorem say in this case?

What does having a pole at z=0 mean? By pole you mean the y-axis?
 
Last edited:
aruwin said:
What does having a pole at z=0 mean? By pole you mean the y-axis?

The function is not holomorphic at z = 0 : there is a "discontinuity" there, but since we're in the complex plane we call these types of discontinuities poles (since it's not really a discontinuity, more of a hole in the domain of the function). See Pole (complex analysis) - Wikipedia, the free encyclopedia

Now if a function is holomorphic everywhere inside a closed convex curve, what does Cauchy's theorem tell you about the integral? (for question 1)
 
Bacterius said:
The function is not holomorphic at z = 0 : there is a "discontinuity" there, but since we're in the complex plane we call these types of discontinuities poles (since it's not really a discontinuity, more of a hole in the domain of the function). See Pole (complex analysis) - Wikipedia, the free encyclopedia

Now if a function is holomorphic everywhere inside a closed convex curve, what does Cauchy's theorem tell you about the integral? (for question 1)

That the integral of f(z)=0? Is that right?
 
aruwin said:
That the integral of f(z)=0? Is that right?

That's correct. Cauchy's theorem for convex regions states that if $f$ is a function holomorphic in a convex region $C$ and $\gamma$ is a closed curve in $C$, then:

$$\int_\gamma f(z) ~ \mathrm{d} z = 0$$

Now for the second question note that the function isn't holomorphic inside the circle, because the circle contains zero. So you have to use the more general theorem (the integral theoem). First cite the theorem and see how it applies to your integral.
 
Bacterius said:
That's correct. Cauchy's theorem for convex regions states that if $f$ is a function holomorphic in a convex region $C$ and $\gamma$ is a closed curve in $C$, then:

$$\int_\gamma f(z) ~ \mathrm{d} z = 0$$

Now for the second question note that the function isn't holomorphic inside the circle, because the circle contains zero. So you have to use the more general theorem (the integral theoem). First cite the theorem and see how it applies to your integral.

Is this correct for no.2? And by the way, the answer for the first one is just zero, right? But I don't understand that theorem. Why does the integral become zero when f(z) is analytic everywhere within a simply-connected region?
 

Attachments

  • IMG_6423.jpg
    IMG_6423.jpg
    23.4 KB · Views: 102
aruwin said:
Is this correct for no.2? And by the way, the answer for the first one is just zero, right? But I don't understand that theorem. Why does the integral become zero when f(z) is analytic everywhere within a simply-connected region?

Proof of Cauchy's Theorem

As for the second, I think what you have done is correct, however I would use the Residue Theorem.
 
Prove It said:
Proof of Cauchy's Theorem

As for the second, I think what you have done is correct, however I would use the Residue Theorem.

Read it! Thank you!
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K