Cauchy-Schwarz Inequality and Its Relation to Trigonometric Identity

  • Thread starter Thread starter hadi amiri 4
  • Start date Start date
  • Tags Tags
    Cauchy
hadi amiri 4
Messages
98
Reaction score
1

Homework Statement


what is the relation between cauchy_schwarz inequality and this ;
Sin(a+b)=Sin(a)Cos(b)+Cos(a)Sin(b):biggrin:


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
Think of it as the dot product of two vectors. From that you can show that, although already obvious, \sin{(a+b)}\leq 1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top