LCKurtz said:
You have there exists n, then you mention N, then you mention ##N_0## below, but you haven't told us what ##N## or ##N_0## is. I suppose you meant this: For each ##\epsilon>0, \exists N\in \mathbb{N}:|a_n-a|<\epsilon\ \forall n>N##
You mean there exists ##N_0## such that ##|a_n-a|<\frac{\epsilon}{2}\ \forall n>N_0##. But you don't need another N. Just use ##\epsilon/2## in the first place: For each ##\epsilon>0, \exists N \in \mathbb{N}:|a_n-a|<\epsilon/2\ \forall n>N##
NO! You must show there exists an ##M## such that if ##n>M## then ##|b_n-a|<\epsilon##. Definitions, definitions! Everything below is dedicated to finding such an ##M##, isn't it? And you can use ##N## instead of ##N_0## below as I indicated above.
Check your arithmetic there and fix the 3 lines below.
You aren't done until you give me the value of ##M## that works. One more iteration should fix your argument.
Suppose ##(a_n)\rightarrow a##.
Show that ##(b_n)\rightarrow a## when ##b_n=\frac{a_1+a_2+...+a_n}{n}##
Definition of ##(a_n)\rightarrow a##:
For each ##\epsilon>0, \exists N\in \mathbb{N}:|a_n-a|<\frac{\epsilon}{2} \forall n>N##
Show ##\exists M\in \mathbb{N}:|b_n-a|<\epsilon\ \forall n>M##
##|b_n-a|##
##= |\frac{a_1+a_2+...+a_n}{n}-a|##
##=|\frac{a_1+a_2+...+a_n-na}{n}|##
##=|\frac{(a_1-a)+(a_2-a)+...+(a_n-1)}{n}|##
By triangle inequality,
##\leq |\frac{a_1-a}{n}|+|\frac{a_2-a}{n}|+...+|\frac{a_n-a}{n}|##
##=\underbrace{(|\frac{a_1-a}{n}|+...+|\frac{a_{N}-a}{n}|)}_{p}+
\underbrace{(|\frac{a_{N+1}-a}{n}|+...+|\frac{a_n-a}{n}|)}_{q}##
##p=|\frac{a_1-a}{n}|+...+|\frac{a_{N}-a}{n}|##
##=\frac{1}{n}(|a_1-a|+...+|a_{N}-a|)##
We define ##n>\frac{2(|a_1-a|+...+|a_{N}-a|)}{\epsilon}##
##\frac{1}{n}(|a_1-a|+...+|a_{N}-a|)<\frac{\epsilon}{2}##
##\Rightarrow p<\frac{\epsilon}{2}##
##q=|\frac{a_{N+1}-a}{n}|+...+|\frac{a_n-a}{n}|##
Using ##|a_n-a|<\frac{\epsilon}{2}\ \forall n>N##
##q<\frac{\epsilon/2}{n}+...+\frac{\epsilon/2}{n}##
##=(\frac{n-N}{n})(\frac{\epsilon}{2})##
##=(1-\frac{N}{n})(\frac{\epsilon}{2})##
Since ##n>N, (1-\frac{N}{n})<1##
##(1-\frac{N}{n})(\frac{\epsilon}{2})<\frac{\epsilon}{2}##
##\Rightarrow q<\frac{\epsilon}{2}##
##|b_n-a|=p+q##
##|b_n-a|< \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon##
##|b_n-a|<\epsilon##
##M=N?##
##∴\exists M:|b_n-a|<\epsilon\ \forall n>M##
##∴(b_n)\rightarrow a##
Okay ... I guess I have to work on using definitions properly ...