Completeness of R2 with Taxicab Norm

gtfitzpatrick
Messages
372
Reaction score
0

Homework Statement



Given R is complete, prove that R2 is complete with the taxicab norm

The Attempt at a Solution



you know that ,xk \rightarrow x , yk \rightarrow y

Then, given \epsilon, choose Nx and Ny so that \left|x_n - x_m\left| and \left|y_n - y_m\left| are less than \epsilon/2 respectively, whenever m,n \geq N = \left|N_x\left|+\left|N_y\left|.

Then d((\ x_n,y_n),(\ x_m,y_m)) = \sqrt{(x_n - x_m)^2 + (y_n - y_m)^2} \leq \sqrt{(\epsilon^2 /4) + (\epsilon^2 /4)} = \epsilon/2 < \epsilon

i've modified an answer from another question here, i think this work but I am not sure...
 
Physics news on Phys.org


Let x_n,y_n be Cauchy sequences in R, then you know they have limits, x,y, elements of R.

Given epsilon>0, choose Nx such that |x_n-x|&lt;\varepsilon/2 for all n>Nx, and choose Ny the same way. Then let N=max(Nx,Ny).

Then for n>N, you have:
d((x_n,y_n),(x,y))=|x_n-x|+|y_n-y|&lt;\varepsilon.
(Remember it specified the taxicab norm, not Euclidean!)

Now you know that (x_n,y_n) converges to (x,y), and that (x,y) is actually in R2. So R2 is complete.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top