Orion1
- 961
- 3
CBR photon equilibrium temperature:
T_{\gamma} = 2.725 \; \text{K}
CBR photon density at equilibrium temperature T_{\gamma}:
n_{\gamma} = \frac{1}{\pi^2} {\left(\frac{k_B T_{\gamma}}{\hbar c}\right)}^3 \int_0^\infty \frac{x^2}{e^x - 1} dx
This is my solution for the integration equation on reference 2.
Integration:
\int_0^\infty \frac{x^2}{e^x - 1} dx = 2 \sum_{n=1}^\infty n^{-3} = 2 \zeta(3)
Complex variable:
\boxed{s = 3}
\boxed{\int_0^\infty \frac{x^2}{e^x - 1} dx = 2 \zeta(3)}
Where \zeta(s) is the Riemann zeta function.
Riemann zeta function:
\zeta(s) = \sum_{n=1}^\infty n^{-s}
The CBR photon density at equilibrium temperature T_{\gamma}:
\boxed{n_{\gamma} = \frac{2 \zeta(3)}{\pi^2} {\left(\frac{k_B T_{\gamma}}{\hbar c}\right)}^3}
\boxed{n_{\gamma} = 4.105 \cdot 10^{8} \; \frac{\text{photons}}{\text{m}^3}}
Are these equations correct?
[/Color]
Reference:
http://en.wikipedia.org/wiki/Riemann_zeta_function"
http://en.wikipedia.org/wiki/Baryogenesis#Baryon_asymmetry_parameter"
http://en.wikipedia.org/wiki/Cosmic_microwave_background_radiation"
Last edited by a moderator: