Centripetal Acceleration of hard drive

AI Thread Summary
The discussion focuses on calculating centripetal acceleration for a CD-ROM at different distances from the center. Initially, a calculation yielded 72 m/s² at 0.050 m from the center, based on a constant linear velocity assumption. However, the correct approach involves using angular velocity, which remains constant in uniform circular motion, leading to a recalculated centripetal acceleration of 200 m/s². The conversation highlights the importance of understanding the relationship between radius and acceleration in circular motion, emphasizing that the period of rotation is the same at different radii. Ultimately, the correct method involves recognizing the role of angular velocity rather than linear velocity in these calculations.
UMich1344
Messages
26
Reaction score
0

Homework Statement



A computer is reading data from a rotating CD-ROM. At a point that is 0.030 m from the center of the disc, the centripetal acceleration is 120 m/s2. What is the centripetal acceleration at a point that is 0.050 m from the center of the disc?

Homework Equations



ac = v2 / r

The Attempt at a Solution



v = √[(120 m/s2)(0.030 m)] = 1.897366596 m/s

ac = (1.897366596 m/s)2 / (0.050 m) = 72 m/s2


I feel this is correct because this question appears in the section of problems that deals only with the following two topics:
- Uniform Circular Motion
- Centripetal Acceleration

I've seen this question asked before on this site and several others, and there is definitely inconsistency in how it is answered. Many people that respond consider angular velocity, which is NOT covered in these two sections of the textbook. If that was, indeed, part of the reasoning for the solution, then I would imagine the problem would have been moved to a different section by now (since this is the 7th edition of the textbook and has gone through plenty of revisions). Based on the following link, my answer is correct: http://www.physics.unomaha.edu/Sowell/Phys1110/quizzes/QuizzesSpr06/quiz7.html. This seems to be the only reliable source I have been able to find as it is from a university (not saying it's infallible) and not a forum (which often contains more false information than a site directly from a university... as I'm sure most of you would agree). This site suggests that we are to assume that linear velocity is constant when solving this problem. I agree with it.

Could someone evaluate my work and check to see if I have done it correctly? Please do not include any information about angular velocity because that concept has not been discussed neither in lecture for my course or in the textbook.
 
Physics news on Phys.org
You have the relationship that

ac = ω²r

This implies directly that with ω constant

ac1 / ac2 = r1 / r2

Or

ac1 * r2 / r1 = ac2

120*5/3 = 200

Your solution is seemingly based on holding v constant which for a spinning disk is not the case, it's the ω that's constant.
 
  • Like
Likes jc10
If you aren't into angular velocity yet, just consider the period. T will be the same for all radii, so it is a useful thing to work with. You can find T from your velocity at the first radius using v = 2(pi)r/T
Once you have T, which applies everywhere, you can find v at the 2nd radius using the same formula. Put that in your centripetal force formula and you'll get the correct answer!
 
Thank you very much. I solved for T in terms of the point that is 0.030 m from the center of the disc, then plugged that value into find the centripetal acceleration at the point that is 0.050 m from the center of the disc.

The numbers worked out very nicely and it came out to be 200 m/s2, as the first response suggested.

I knew there had to be more to it, but I wasn't seeing it.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top