_N3WTON_
- 350
- 3
Homework Statement
A rocket car is constrained to move on an elliptical track (semi-major axis a and semi-minor axis b). The car is moving at a constant speed v_0. Determine the acceleration of the car in \frac{m}{s^2}. a = 4 \hspace{2 mm} km, b = 2 \hspace{2 mm} km, and v_0 = 360 \frac{km}{hr}.
Homework Equations
The Attempt at a Solution
My thought for this problem was to try and find the value of 'R' using the definition of curvature: \kappa = \frac{1}{R}. Using the definition of an ellipse: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, I solved for 'y' and ended up with: y = b \sqrt{1- \frac{x^2}{a^2}}. Then, I used the definition of curvature \kappa = \frac{\frac{d^2y}{dx^2}}{(1+(\frac{dy}{dx})^2)^\frac{3}{2}}. Then, I took the first and second derivative of my equation for an ellipse (I will not write them here because it gets very messy). Then, I substituted my second derivative into the equation for curvature. Finally, using the fact that \kappa = \frac{1}{R}, therefore R = \frac{1}{\kappa}. So I substituted my equation for R (1 over kappa) into the equation for centripetal acceleration( a = \frac{v^2}{R} and used the given v_0 = 360 \frac{km}{hr}. However, as you can probably guess, this is extremely messy. Furthermore, I do not see how I am to get rid of the x and y in my equations (the answer is meant to be a numeric value). So I am certain I have done something wrong but I'm not sure what...