Chain Rule Exercise: Find dg/dx + dg/dy

tsangz
Messages
1
Reaction score
0

Homework Statement


Suppose g(x,y)=f(x-y,y-s)


Homework Equations


Nothing else

The Attempt at a Solution


Find dg/dx + dg/dy
 
Physics news on Phys.org
Hmm I believe this exercise would be easier if you let r = x-y and p = y-s.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top