Mariuszek said:
\int{\sec^{3}{\theta}\mbox{d}\theta}
If you use u=\csc{\theta} substitution you will have to do the partial fraction decomposition
u=\sec{\theta}+\tan{\theta} will also work
If you prefer reduction formula use it
This one's super easy (I encountered it while trying to find the arc length of ##y=x^2##).
(1) ##\int sec^3 \theta\ d\theta = \int sec^2\theta\ sec \theta\ d\theta##. Integrating by parts, we get
(2) $$sec \theta\ tan\theta - \int sec\theta\ tan^2 \theta\ d\theta=sec\theta\ tan\theta - \int sec^3\theta\ d\theta +\int sec\theta\ d\theta$$
So (3) $$\int sec^3 \theta\ d\theta = \frac1{2}(sec\theta\ tan\theta + \int sec\theta\ d\theta)$$
Let's solve the integral of ##sec\theta## on the right. Multiplying the denominator and numerator by ##cos \theta##, we get
(4) $$\int \frac{cos \theta}{cos^2 \theta} d\theta = \int \frac{cos \theta}{1-sin^2 \theta} d\theta$$
Factorizing the denominator, we get (5)$$\int \frac{cos \theta}{(1+sin \theta)(1-sin\theta)} d\theta$$
This can be rationalized to give (6)$$\int \frac1{2} (\frac{cos \theta}{1+sin\theta}+\frac{cos \theta}{1-sin\theta}) d\theta$$
Let ##u=sin \theta##. Then ##du=cos\theta\ d\theta##. So our integral expression becomes from (4) becomes $$\frac1{2}(ln|1+sin\theta|-ln|1-sin\theta|)$$,which is the same as writing $$ln \sqrt{\frac{1+sin \theta}{1-sin\theta}}$$ If we multiply the numerator and denominator by ##1+sin\theta##, we get the lovely expression
$$ln \sqrt{\frac{(1+sin\theta)^2}{(cos \theta)^2}}=ln|\frac{1+sin\theta}{cos \theta}|=ln|sec\theta+tan\theta|$$
Making the final substitution into (3), we get ##\int sec^3 \theta\ d\theta = \frac1{2}(sec\theta\ tan\theta + ln|sec\theta +tan\theta|)+c##, where ##c## is an arbitrary constant. IMO, this is too trivial a question to appear in this thread. If you
really want to push things up a notch though, try the double integral of ##sec^3x##

(It uses elliptical integrals, and I myself don't have the slightest clue how to solve it)