Change from polar to rectangular coordinates

duki
Messages
264
Reaction score
0

Homework Statement



change from polar to rectangular coordinates

Homework Equations



\cos{theta}+r^2\sin{theta}=\tan{theta}

The Attempt at a Solution



I got
x^2 + y^2 + x + y = \frac{y}{x}\sqrt{x^2+y^2}

does that look right?
 
Physics news on Phys.org
Since r^2 is multiplied by \sin \theta rather than added to it, shouldn't it be

x + (x^2 + y^2)y = \frac{y}{x}\sqrt{x^2 + y^2}?
 
ooohh thanks
 
The simplest way to do this is to multiply the entire equation by r:
r cos(\theta)+ r^2(r sin(\theta))= r tan(\theta)= r \frac{r sin(\theta)}{r cos(\theta)}
so
x+ (x^2+ y^2)y= \sqrt{x^2+ y^2}\frac{y}{x}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top