Change in area due to relative motion

AI Thread Summary
An observer moving at 0.8c relative to a square of area 100 cm² measures a different area due to relativistic effects. The observer initially calculated the new area as 68 cm², assuming the shape remained a square. However, the correct approach reveals that the square transforms into a rhombus due to differential contraction of the sides. The area of the rhombus is calculated as 60 cm², confirming the discrepancy with the initial assumption. The discussion emphasizes the importance of understanding shape transformation in relativistic motion.
Amith2006
Messages
416
Reaction score
2

Homework Statement


1) A square of area 100 cm^2 is at rest in the reference frame of O. Observer O’ moves relative to O at 0.8c along the diagonal of the square. What is the area measured by O’?



Homework Equations





The Attempt at a Solution



I solved it the following way:
I resolved each side of the square into 2 components- One along the diagonal and the other perpendicular to the diagonal.
Given that side of square(a)=10 cm
Component of side a along the diagonal=a(cos(45)) cm
Component of side a perpendicular to the diagonal=a(sin(45)) cm
Due to the motion of O’ only the component of a along the diagonal gets
contracted.
Contracted length= a(cos(45))[1 – v^2/c^2]^(1/2)
= 6/(2^(1/2))
Let a1 be the side of the new square w.r.t O’.
By applying Pythagoras theorem,
a1=[ {6/(2^(1/2))}^2 + { a(sin(45))}^2]^(1/2)
= sqrt(68) cm
Area of new square= (a1)^2
= 68 cm^2
But the answer the given in my book is 60 cm^2.
 
Physics news on Phys.org
Amith2006 said:

Homework Statement


1) A square of area 100 cm^2 is at rest in the reference frame of O. Observer O’ moves relative to O at 0.8c along the diagonal of the square. What is the area measured by O’?



Homework Equations





The Attempt at a Solution



I solved it the following way:
I resolved each side of the square into 2 components- One along the diagonal and the other perpendicular to the diagonal.
Given that side of square(a)=10 cm
Component of side a along the diagonal=a(cos(45)) cm
Component of side a perpendicular to the diagonal=a(sin(45)) cm
Due to the motion of O’ only the component of a along the diagonal gets
contracted.
Contracted length= a(cos(45))[1 – v^2/c^2]^(1/2)
= 6/(2^(1/2))
Let a1 be the side of the new square w.r.t O’.
By applying Pythagoras theorem,
a1=[ {6/(2^(1/2))}^2 + { a(sin(45))}^2]^(1/2)
= sqrt(68) cm
Area of new square= (a1)^2
= 68 cm^2
But the answer the given in my book is 60 cm^2.
You calculated the sides of the shape correctly, but why did you assume that the new shape as viewed by the observer was still a square?
 
PhanthomJay said:
You calculated the sides of the shape correctly, but why did you assume that the new shape as viewed by the observer was still a square?

That is because all the sides are contracted to the same extent. So I thought that it would still remain a square.
 
Amith2006 said:
That is because all the sides are contracted to the same extent. So I thought that it would still remain a square.
When you calculated the side a1 using Pythagorus, you correctly took the sq rt of the sum of the squares of the triangle legs. The vertical leg is contracted
along the diagonal of the square in the direction of the motion. The horizontal leg (and horizontal diagonal of the square) is not contracted, since it is perpendicular to the motion. Draw a quick sketch . You no longer will have a square.
 
So the resultant figure is a rhombus, isn’t it?
Area = ½ x (diagonal1)x(diagonal2)
= ½ x [6(2^(1/2))]x[10(2^(1/2)]
= 60 cm^2
Am I right now?
 
Amith2006 said:
So the resultant figure is a rhombus, isn’t it?
Area = ½ x (diagonal1)x(diagonal2)
= ½ x [6(2^(1/2))]x[10(2^(1/2)]
= 60 cm^2
Am I right now?
Yes, you've got it.
 
Thanx buddy.
 
Back
Top