Changing the Order of Integration for Double Integrals

  • Thread starter Thread starter yzc717
  • Start date Start date
  • Tags Tags
    Integral
yzc717
Messages
5
Reaction score
0

Homework Equations


The Attempt at a Solution



that is \int_0^{\sqrt{\pi}}\int_x^{\sqrt{\pi}} \sin(y^2) ~dy ~dx

Reverse the order of the integrals (which is possible since the integrand is positive) :
0\leq x\leq y\leq \sqrt{\pi} \Rightarrow y ranges from 0 to \sqrt{\pi}

0\leq x\leq y\leq \sqrt{\pi} \Rightarrow x varies from 0 to y.

So the integral is now :

\int_0^{\sqrt{\pi}}\left(\int_0^y \sin(y^2) ~dx\right)~dy

=\int_0^{\sqrt{\pi}}\left(\sin(y^2)\int_0^y dx\right)~dy
 
Last edited:
Physics news on Phys.org
Because you changed the order of integration, you don't have to compute the integral of sin(y^2) but rather y*sin(y^2), which can be done by a simple substitution.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top