Well, I think I can answer the question by choosing limit for u from ##u_1 = -\infty## to ##u_2 = \infty## and ##v=0## to ##v=\infty##. Limit for v is the same with previous variables because for x,y = 0 I get v = 0 and for x,y approach ##\infty##, v approach ##\infty##.
According previous post, there are 2 methods for define the limit for u since I get indeterminate form while substitute the value for x and y approach infite. I call it geometrically and analytically. With geometric, I have to draw x,y plane and see the region. Than, in the same plane, I have to draw u,v axes and see that in first quadrant, there is one condition that supposed to be satisfied: x,y both positives. That means, x can bigger than y or x is smaller than y. If u varies from 0 to infinite than this limit only a half of original region. So, u is supposed to vary from ##-\infty## to ##\infty##.
Analytically, I have to use polar form to see that first quadrant is corresponded with ##\theta## varies from 0 to ##\pi/2##. Then, I have to change u variable to polar form and see that ##\theta## is transformed to ##2\theta## by this axe. So, in this variable, ##\theta## varies from 0 to ##2(\pi/2)##. This region is corresponded with circle with radius from ##-\infty## to ##\infty##. So, this is the u limit.
For the v limit, I can just take limit ##v=2xy## as x,y approach 0 and infinite. That's it. So, the integral becomes to:
$$I=\frac {1}{4} \int_{v=0}^{\infty} \int_{u=-\infty}^{\infty} \frac {e^{-v}}{1+u^2} du dv = {1/4}(1){\pi}$$