fluidistic
Gold Member
- 3,928
- 272
Homework Statement
I must calculate the characteristic function as well as the first moments and cumulants of the continuous random variable f_X (x)=\frac{1}{\pi } \frac{c}{x^2+c^2} which is basically a kind of Lorentzian.
Homework Equations
The characteristic function is simply a Fourier transform, namely \phi _X (k)= \int _{-\infty } ^{\infty } \frac{e^{ikx}}{x^2+c^2}dx.
The Attempt at a Solution
My problem resides in evaluation the integral. If there wasn't that exponentional in the numerator, I'd get an arctangent but unfortunately I have a complex exponentional there.
Is \phi _X (k)=\frac{ce^{ik}}{\pi} \int _{-\infty}^{\infty} \frac{e^x}{x^2+c^2}dx valid and a good start?
Edit: Hmm no ! Very bad. This would make the integral not convergent... How is that possible? The range of x is -infinity to infinity!
Last edited: