Locoism said:
Homework Statement
Given the matrix:
0 1 0
0 0 1
12 8 -1
(sorry I don't know how to put proper matrix format)
a) find polynomials a(λ)(λ+2)2+b(λ)(λ-3) = 1 (where a(λ) and b(λ) are the polynomials)
The Attempt at a Solution
Well the characteristic polynomial is already given, but can easily be found, as
(λ+2)2(λ-3)
but how do I find such polynomials? Is this what is meant by the minimal polynomial?
I don't understand. First you say that the characteristic polynomial "can easily be found, as (x+2)^2 *(x-3)" [using 'x' instead of 'lambda'], but then you say "but how do I find such polynomials?". So, do you, or do you not know how to find the characteristic polynomial?
As to minimal polynomial: well, it is a theorem that a matrix satisfies its own characteristic polynomial. For you matrix A the characteristic polynomial is C(x) = x^3 + x^2 - 8x - 12, so A satisfies A^3 + A^2 - 8A - 12I (where I = 3x3 identity matrix). In other words, the polynomial C "annihilates" A: C(A) = 0. The minimal polynomial of A is the polynomial of least degree that annihilates A (and has leading coefficient = 1). Sometimes the characteristic polynomial is the minimal polynomial, and sometimes not. For example, the 3x3 identity matrix I = [[1 0 0],[0 1 0], [0 0 1]] has characteristic polynomial C(x) = x^3 - 1, but has minimal polynomial x-1 (because A - 1*I = 0 when A = I).
One algorithm to find the minimal polynomial is that used by Maple: regard I, A, A^2 and A^3 as 9-dimensional vectors, obtained by writing the rows side-by side (so A <--> [0 1 0 0 0 1 12 8 -1], etc.). The fact that A satisfies the characteristic polynomial means that A^3 is a linear combination of I, A and A^2 with known coefficients. By doing linear algebra row operations, we can find the smallest number of rows among I, A, A^2 and A^3 such that A^k is a linear combination of I, A,..., A^(k-1), and that linear combination gives the minimal polynomial.
RGV