Classical mechanics ~ Potential energy and periodic movement

rmfw
Messages
53
Reaction score
0
Hey all,

suppose there's a particle with Potential Energy : U(x) = A*[ x^(-2) - x^(-1) ] , where A is a constant.

I'm supposed to find the energy required to make the particle go from periodic movement to unlimited movement.

First thing I did was U '(x) = 0 to find the balance points, now the problem is that there's only one root to the function, which means there's only one balance point at x=2 (stable).

I thought I was going to find two or more balance points to determine the energy that divides the movements.

It's my first time posting here so I hope I'm making myself clear, but can someone explain me where I'm wrong ?
 
Last edited:
Physics news on Phys.org
Hi rmfw, welcome to PF.

There are some rules here in the Forums, how to post your question. Read https://www.physicsforums.com/showthread.php?t=686781, please.

That particle moves in a potential well, how does it look like? Make a sketch. Why do you think there should be more balance points? What is that equilibrium point, minimum or maximum? At what energy is the particle free to go to infinity and not confined into the well? ehild
 
Hi, on the first picture is the graph I got. On the second picture is the graph of what I expected. I know that if the particle was trapped in the potential well (picture 2) , with an energy of E>k the particle would go into unlimited movement.

Now back to the first picture, if someone questions me what's the energy required to change the movement of the particle from periodic to unlimited, is the right answer E=0 ?

EDIT: in the second picture both maximums are supposed to be at the same height.
 

Attachments

  • 1.jpg
    1.jpg
    8.1 KB · Views: 431
  • 2.jpg
    2.jpg
    6.2 KB · Views: 401
rmfw said:
Hi, on the first picture is the graph I got. On the second picture is the graph of what I expected. I know that if the particle was trapped in the potential well (picture 2) , with an energy of E>k the particle would go into unlimited movement.

Now back to the first picture, if someone questions me what's the energy required to change the movement of the particle from periodic to unlimited, is the right answer E=0 ?

EDIT: in the second picture both maximums are supposed to be at the same height.

Your first picture is almost right: Assuming A>0, the potential increases to infinity if x -->0.
The potential has got a negative minimum value, and tends to 0 if x -->∞. When the energy of the particle is negative, Emin<E<0, the particle is confined in the potential well. Your answer is correct, if E=0 the movement of the particle becomes unlimited, it can go to positive infinity.

The second picture is not relevant to the problem.

ehild
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top