wavecaster
- 1
- 0
Homework Statement
If A is a time dependent vector, calculate
\int_{t1}^{t2} dtA(t) \times \frac{d^2A}{dt^2} [\itex]<br /> <br /> <h2>Homework Equations</h2><br /> <br /> <br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> I think we should somehow relate it with something's derivative.<br /> <br /> \int_{t1}^{t2}A(t)\frac{d^2A(t)}{dt^2}dt=<br /> A(t)\int_{t1}^{t2}\frac{d^2A(t)}{dt^2}dt-\int_{t1}^{t2}\frac{dA(t)}{dt}\left ( \int \frac{d^2A(t)}{dt^2} \right )dt=<br /> A(t)\frac{dA(t)}{dt}\left.\right|_a^b\int_{t1}^{t2}\left ( \frac{dA(t)}{dt} \right )^2dt=<br /> A(t2)\frac{dA(t)}{dt}\left.\right|_t_{2}-A(t1)\frac{dA(t)}{dt}\left.\right|_t_{1}-\int_{t1}^{t2}\left ( \frac{dA(t)}{dt} \right )^2dt
Last edited: