Coefficient of 'Kinetic' Rolling Friction(?)

AI Thread Summary
The discussion centers on the coefficient of rolling friction and whether it remains constant for stationary and moving objects. It highlights that rolling resistance is distinct from static and kinetic friction, suggesting that a larger force is needed for initial acceleration from rest compared to maintaining motion. The conversation also notes that rolling resistance may be influenced by factors like tire condition and surface interaction. Additionally, it emphasizes the importance of terminology, advocating for the term "rolling resistance" to avoid confusion with traditional friction concepts. The need for further literature on this topic is expressed, especially regarding the relationship between static and rolling resistance.
mart7x
Messages
12
Reaction score
0
When looking at rolling objects, the force of rolling resistance is determined by a coefficient of rolling friction. Is this coefficient constant for an object when both stationary and moving? Or is there a separate static and kinetic coefficient as there is with sliding friction?

I am asking this because the research I have done into this so far, I have only found talk of just the one coefficient. However an object on wheels much surely require a larger force for initial acceleration from stationary than to maintain velocity once in motion? If you could recommend any literature on this subject that would be very kind, I have searched through a number of books on Statics but can't seem to find much information.

Martin
 
Physics news on Phys.org
Unless it's moving it's not rolling.
 
So... for a wheel for example: Stationary - Coefficient of Static Friction, Rolling - Coefficient of Rolling Friction.

If a surface was made of wood, a wooden wheel would have the same resistive force as a block of wood when resting stationary on top (assuming they have the same mass)?
 
It should be called rolling resistance, not rolling friction, since that can cause it to be confused with actual friction (static or dynamic).

You could consider "static" rolling resistance to be related to the amount of torque or force it takes to overcome a "flat' spot at the bottom of the wheel if it's been at rest for some time. For example a cold tire on a car that's been at rest overnight. Normally rolling resistance is considered a constant fraction of the weight on the wheel (or the force between tire and pavement). It may vary a bit with speed, but I don't know the formula.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...

Similar threads

Back
Top