Column Space of A'*A: Subset of A'?

MichaelL.
Messages
3
Reaction score
0
Let A be an n x p matrix with real entries and A' be its transpose. Is the column space of A'*A the same as the column space of A'. Obviously, the column space of A'*A is a subset of the column space of A' but can I show the other way? Thanks!
 
Physics news on Phys.org
Well, I figured it out if anyone is interested.

Using the argument here (http://en.wikipedia.org/wiki/Rank_(linear_algebra)) under rank of a "Gram matrix" with real entries and the rank + nullity equals number of columns theorem you can show the rank of A equals the rank of A'*A.

Thus, the rank(A')=rank(A)=rank(A'*A). So the column space of A' has the same dimension as the column space of A'*A and since the column space of A'*A is a subset of the column space of A' as vector spaces of the same dimension they are the same.

I think that's right!
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top