Combinatorial Theory (f*h=g*h) g=f?

  • Thread starter Thread starter bloynoys
  • Start date Start date
  • Tags Tags
    Theory
bloynoys
Messages
25
Reaction score
0

Homework Statement



If f :X -> X and g:X -> X are functions, and h:X -> X is a one-to-one function such that
f * h = g * h need it be the case that f = g? Prove it or give a counterexample. What if, in addition, X is finite?



The Attempt at a Solution



I know that f does not equal g for an infinite set but is for a finite set. I know to prove that it isn't when it is infinite set it is the difference between the onto function. I am not sure how to relate that to the problem and build a proof out of it.

Thanks!
 
Physics news on Phys.org
Yes, g must equal f in your example, i do not have time to answer your question fully, but I would first say you have not correctly defined a one-to-one function appropriately. Look into defining similarity of classes of a one to one relation.
 
bloynoys said:

Homework Statement



If f :X -> X and g:X -> X are functions, and h:X -> X is a one-to-one function such that
f * h = g * h need it be the case that f = g? Prove it or give a counterexample. What if, in addition, X is finite?

The Attempt at a Solution



I know that f does not equal g for an infinite set but is for a finite set. I know to prove that it isn't when it is infinite set it is the difference between the onto function. I am not sure how to relate that to the problem and build a proof out of it.

Thanks!

I think you've got the right idea. If X is finite and h is one-to-one, then h is also onto. So f=g. So if you want to construct a counterexample (and you DO), pick X to be an infinite set and h one-to-one but not onto. Try it.
 
I am not sure where to go from here. I understand all the basics of onto and one to one functions but am struggling to apply them here.

What I have:

X is an infinite set, h is a one to one function, but not an onto function. Thus when using the function h, the two infinite X sets do not have matching ranges. Thus, there could be two different h values and so f does not have to equal g for infinite sets.

When X is a finite set, and h is one to one, then it has to be onto, thus stating that through the function h, the number is equal to it's output and thus h=h and so f has to equal g.

Is that right? I feel like I am missing something. Thanks again for all your help!
 
bloynoys said:
I am not sure where to go from here. I understand all the basics of onto and one to one functions but am struggling to apply them here.

What I have:

X is an infinite set, h is a one to one function, but not an onto function. Thus when using the function h, the two infinite X sets do not have matching ranges. Thus, there could be two different h values and so f does not have to equal g for infinite sets.

When X is a finite set, and h is one to one, then it has to be onto, thus stating that through the function h, the number is equal to it's output and thus h=h and so f has to equal g.

Is that right? I feel like I am missing something. Thanks again for all your help!

Try an example. Pick X=Z, the integers. Define h:Z->Z, by h(x)=2x. Is h one-to-one? Is it onto? Use that to make your counterexample.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top