Combining Fine Structure Corrections

  • Thread starter Thread starter logic smogic
  • Start date Start date
  • Tags Tags
    Structure
logic smogic
Messages
54
Reaction score
0

Homework Statement



We are to combine the Relativistic Kinetic Energy, Spin-Orbit Interaction, and Darwin fine structure correction terms into a single formula for the energy shift in the Hydrogen atom. The formula must depend only on j = l +/- 1/2, but not l, and must be valid for all l, including l = 0.

Homework Equations



The above corrections are given as:
https://mywebspace.wisc.edu/dpfahey/web/PF01.bmp

The Attempt at a Solution



Well, \Delta {E}_{n,total} = \Delta {E}_{n,kin} + \Delta {E}_{n,so} + \Delta {E}_{n,D}

Where <S \cdot L> = \left[j(j + 1) - l(l + 1) - s(s +1) \right ]
So, presumably, we just add the given corrections, and collect/eliminate like terms. I began doing this until I became confused by stipulation of dependence on j only, and not l.

So my (simple) question is: If the formula will depend on j, and j depends on l, then how will the formula not depend on l?

Also, how will the resultant formula be good for all l, as one of the correction terms does not allow for l = 0?
 
Last edited by a moderator:
Physics news on Phys.org
logic smogic said:

Homework Statement



We are to combine the Relativistic Kinetic Energy, Spin-Orbit Interaction, and Darwin fine structure correction terms into a single formula for the energy shift in the Hydrogen atom. The formula must depend only on j = l +/- 1/2, but not l, and must be valid for all l, including l = 0.

Homework Equations



The above corrections are given as:
https://mywebspace.wisc.edu/dpfahey/web/PF01.bmp

The Attempt at a Solution



Well, \Delta {E}_{n,total} = \Delta {E}_{n,kin} + \Delta {E}_{n,so} + \Delta {E}_{n,D}

Where <S \cdot L> = \left[j(j + 1) - l(l + 1) - s(s +1) \right ]
So, presumably, we just add the given corrections, and collect/eliminate like terms. I began doing this until I became confused by stipulation of dependence on j only, and not l.

So my (simple) question is: If the formula will depend on j, and j depends on l, then how will the formula not depend on l?

Also, how will the resultant formula be good for all l, as one of the correction terms does not allow for l = 0?


You will have to break it down into three cases.

First consider l=0 (in which case, j is obviously l+1/2 =1/2). Add the kinetic and darwin corrections

Now consider l is not zero. Break this up into two subcases. First consider j=l-1/2. So replace all the "l"s by j+1/2 and add the kinetic and spin-orbit.

Now do j=l+1/2, repeat as above.

If I recall correctly, something quite miraculous happens. I think that all three results end up identical. But don't quote me on that.

Patrick
 
Last edited by a moderator:
Of course all 3 turn equal, else the formula would be much more complicated.
 
Ah, thanks to both of you for the advice. It's great to see it turn out!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top