Comet's Velocity Homework: Answer What Speed at Perihelion?

  • Thread starter Thread starter Jtappan
  • Start date Start date
  • Tags Tags
    Velocity
AI Thread Summary
The discussion centers on calculating Halley's Comet's speed at perihelion, given its aphelion speed and distances from the Sun. Participants emphasize using energy conservation and Kepler's laws to derive the relationship between velocities at aphelion and perihelion. The key formula mentioned is the inverse ratio of velocities to distances, expressed as v1.d1 = v2.d2. The calculated speed at perihelion is approximately 746,428.57 m/s. This approach effectively utilizes gravitational principles to solve the problem.
Jtappan
Messages
95
Reaction score
0

Homework Statement



The orbit of Halley's Comet around the Sun is a long thin ellipse. At its aphelion (point farthest from the Sun), the comet is 5.7 * 10^12 m from the Sun and moves with a speed of 11.0 km/s. What is the comet's speed at its perihelion (closest approach to the Sun) where its distance from the Sun is 8.4 * 10^10 m?
_____km/s




Homework Equations



PEi+KEi=PEf+KEf

The Attempt at a Solution



do the m and g values cancel out when doing this because they are not given? I am totally lost...
 
Physics news on Phys.org
Weak, they gave you the perihelion. Since they gave perihelion distance, a lot of trouble is saved. Now this begs the question of what is the difference between the aphelion and the perihelion? Is there any kind of easily attainable relation you can use? To give you a hint, you might want to consider more than energy conservation. (Hint hint: one of them types of momentum, and one is better than the other.)

Did you know that you can solve for the perihelion with the information they have given you? If you feel ambitious, give it a try.
 
using kepler's second law,that areal velocity is constant for anybody in gravitational revolution in elliptical orbit,and applying it for positions at perigee and apogee,taking infifitesimally small orbital motion,we get the areas for the respective triangles at these positions...dividing the obtained relation with infitesimally small time duration 'dt',we get a ratio of velocities at these two positions with relation to the distances...the relation obtained is... v1.d1 = v2.d2

thus,simply using this inverse ratio,we can find the answer...

the velocity at the nearmost point of comet from sun is '746428.571428...m/s'

in short,i applied kepler's law at small intervals of distances and differentiated it wrt time to obtain velocity...
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .

Similar threads

Replies
3
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
5
Views
3K
Replies
15
Views
1K
Replies
3
Views
2K
Back
Top