Complex exponential and sine-cosine Fourier series

sikrut
Messages
48
Reaction score
1
The sine-cosine (SC) Fourier series: $$f(x) = \frac{A_0}{2} + \sum_{j=1}^{+\infty} A_j cos(jx) + \sum_{j=1}^{+\infty} B_jsin(jx) $$

This form can also be expanded into a complex exponential (CE) Fourier series of the form: $$ f(x) = \sum_{n=-\infty}^{+\infty} C_n e^{inx} $$

and vice versa. Here we define, for convenience: $$ B_n := 0 $$

(a) Prove that the SC Fourier coefficients ##A_j## and ##B_j## for non-negative integer ## j = 0,1,2,3...## are related to the CE Fourier coefficients ##C_n## by: $$ A_j = C_j + C_{-j} ; \\ B_j = i(C_j - C_{-j}) ; \\ for: j = 0,1,2,3... $$

Hint: All you need here is Euler: ## e^{i\gamma} = cos(\gamma) + isin(\gamma) ## or ## cos(\gamma) = (e^{i\gamma} + e^{-i\gamma})/2 ## or ## sin(\gamma) = (e^{i\gamma} - e^{-i\gamma})/(2i) ##


I plugged in the Euler formula to the CE Fourier series and evaluated the definite integral from -pi to pi, which equaled zero, soooo I'm not too sure what to do...
 
Physics news on Phys.org
You don't need to integrate. Just expand the (CE) series using Euler's formula and group the sines and cosines into their own sums. Then judiciously apply the evenness and oddness of cosine and sine respectively to get your coefficient identities.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top