Solve Complex Number Equation - V(o) = 183.53-j14.12

stau40
Messages
37
Reaction score
0

Homework Statement


I'm working on a circuits equation and need to find V(o). The equation is: (V(o)/-j25)+((V(o)-240)/12.5)+(V(o)/(15+j20))=0 How do I solve for V(o)? I know the answer is 183.53-j14.12, but I don't understand how to get to that answer. Thanks in advance!


Homework Equations





The Attempt at a Solution


 
Physics news on Phys.org
1st step: multiply by -j25 * 12.5 * (15+j20)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top