Complex numbers De Moivre's theorem

AI Thread Summary
The discussion focuses on proving the formulas for the sums of cosines and sines using complex numbers and De Moivre's theorem. The derivation shows that the sums can be expressed as C and S, where C represents the cosine sum and S the sine sum. The key result is that C and S can be rewritten in terms of sine functions divided by sine of half the angle, multiplied by cosine and sine of half the total angle, respectively. A correction is noted regarding the notation for trigonometric functions, emphasizing the importance of using proper formatting for clarity. Overall, the mathematical approach is validated, but attention to detail in notation is advised for better readability.
iDimension
Messages
108
Reaction score
4

Homework Statement


If
$$C = 1+cos\theta+...+cos(n-1)\theta,$$
$$S = sin\theta+...+sin(n-1)\theta,$$prove that
$$C=\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}} cos\frac{(n-1)\theta}{2} \enspace and \enspace S = \frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}sin\frac{(n-1)\theta}{2}$$

Homework Equations

The Attempt at a Solution


$$C+iS = 1+(cos\theta+isin\theta)+...+(cos(n-1)\theta+isin(n-1)\theta)$$
$$=1+e^{i\theta}+...+e^{i(n-1)\theta}$$
$$=1+z+...+z^{n-1}, \enspace where \enspace z=e^{i\theta}$$
$$=\frac{1-z^n}{1-z}, \enspace if \enspace z\neq1$$
$$=\frac{1-e^{in\theta}}{1-e^{i\theta}}=\frac{e^\frac{in\theta}{2}(e^\frac{-in\theta}{2}-e^\frac{in\theta}{2})}{e\frac{i\theta}{2}(e\frac{-i\theta}{2}-e\frac{i\theta}{2})}$$
$$=e^{i(n-1)\frac{\theta}{2}}\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}$$
$$=(cos(n-1)\frac{\theta}{2}+isin(n-1)\frac{\theta}{2})\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}$$

Is this correct? I'm not sure about the final solution. The final result is that the real parts equal the imaginary parts?
 
Physics news on Phys.org
iDimension said:

Homework Statement


If
$$C = 1+cos\theta+...+cos(n-1)\theta,$$
$$S = sin\theta+...+sin(n-1)\theta,$$prove that
$$C=\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}} cos\frac{(n-1)\theta}{2} \enspace and \enspace S = \frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}sin\frac{(n-1)\theta}{2}$$

Homework Equations

The Attempt at a Solution


$$C+iS = 1+(cos\theta+isin\theta)+...+(cos(n-1)\theta+isin(n-1)\theta)$$
$$=1+e^{i\theta}+...+e^{i(n-1)\theta}$$
$$=1+z+...+z^{n-1}, \enspace where \enspace z=e^{i\theta}$$
$$=\frac{1-z^n}{1-z}, \enspace if \enspace z\neq1$$
$$=\frac{1-e^{in\theta}}{1-e^{i\theta}}=\frac{e^\frac{in\theta}{2}(e^\frac{-in\theta}{2}-e^\frac{in\theta}{2})}{e\frac{i\theta}{2}(e\frac{-i\theta}{2}-e\frac{i\theta}{2})}$$
$$=e^{i(n-1)\frac{\theta}{2}}\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}$$
$$=(cos(n-1)\frac{\theta}{2}+isin(n-1)\frac{\theta}{2})\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}$$

Is this correct? I'm not sure about the final solution. The final result is that the real parts equal the imaginary parts?

Yes, your derivation is correct, but the the real part is not equal to the imaginary part.
 
Correct. But I have an important word-smithing note:
Throughout the entire post, you should put parentheses around all the angles that you take sins and cos of.
Not
$$=cos(n-1)\frac{\theta}{2}$$
but
$$=cos((n-1)\frac{\theta}{2})$$
 
FactChecker said:
Correct. But I have an important word-smithing note:
Throughout the entire post, you should put parentheses around all the angles that you take sins and cos of.
Not
$$=cos(n-1)\frac{\theta}{2}$$
but
$$=cos((n-1)\frac{\theta}{2})$$

Also: do not write ##sin \theta## and ##cos \theta## (ugly and hard to read); instead, write ##\sin \theta## and ##\cos \theta## (easy to read and looks good). To do it, just put a "\" before your sin or cos, so say "\sin" instead of "sin", etc. This holds as well for all the other trig functions, as well as 'log', 'ln', 'lim', 'max', 'min', 'exp' and several others.
 
Back
Top