Complex numbers De Moivre's theorem

iDimension
Messages
108
Reaction score
4

Homework Statement


If
$$C = 1+cos\theta+...+cos(n-1)\theta,$$
$$S = sin\theta+...+sin(n-1)\theta,$$prove that
$$C=\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}} cos\frac{(n-1)\theta}{2} \enspace and \enspace S = \frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}sin\frac{(n-1)\theta}{2}$$

Homework Equations

The Attempt at a Solution


$$C+iS = 1+(cos\theta+isin\theta)+...+(cos(n-1)\theta+isin(n-1)\theta)$$
$$=1+e^{i\theta}+...+e^{i(n-1)\theta}$$
$$=1+z+...+z^{n-1}, \enspace where \enspace z=e^{i\theta}$$
$$=\frac{1-z^n}{1-z}, \enspace if \enspace z\neq1$$
$$=\frac{1-e^{in\theta}}{1-e^{i\theta}}=\frac{e^\frac{in\theta}{2}(e^\frac{-in\theta}{2}-e^\frac{in\theta}{2})}{e\frac{i\theta}{2}(e\frac{-i\theta}{2}-e\frac{i\theta}{2})}$$
$$=e^{i(n-1)\frac{\theta}{2}}\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}$$
$$=(cos(n-1)\frac{\theta}{2}+isin(n-1)\frac{\theta}{2})\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}$$

Is this correct? I'm not sure about the final solution. The final result is that the real parts equal the imaginary parts?
 
Physics news on Phys.org
iDimension said:

Homework Statement


If
$$C = 1+cos\theta+...+cos(n-1)\theta,$$
$$S = sin\theta+...+sin(n-1)\theta,$$prove that
$$C=\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}} cos\frac{(n-1)\theta}{2} \enspace and \enspace S = \frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}sin\frac{(n-1)\theta}{2}$$

Homework Equations

The Attempt at a Solution


$$C+iS = 1+(cos\theta+isin\theta)+...+(cos(n-1)\theta+isin(n-1)\theta)$$
$$=1+e^{i\theta}+...+e^{i(n-1)\theta}$$
$$=1+z+...+z^{n-1}, \enspace where \enspace z=e^{i\theta}$$
$$=\frac{1-z^n}{1-z}, \enspace if \enspace z\neq1$$
$$=\frac{1-e^{in\theta}}{1-e^{i\theta}}=\frac{e^\frac{in\theta}{2}(e^\frac{-in\theta}{2}-e^\frac{in\theta}{2})}{e\frac{i\theta}{2}(e\frac{-i\theta}{2}-e\frac{i\theta}{2})}$$
$$=e^{i(n-1)\frac{\theta}{2}}\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}$$
$$=(cos(n-1)\frac{\theta}{2}+isin(n-1)\frac{\theta}{2})\frac{sin\frac{n\theta}{2}}{sin\frac{\theta}{2}}$$

Is this correct? I'm not sure about the final solution. The final result is that the real parts equal the imaginary parts?

Yes, your derivation is correct, but the the real part is not equal to the imaginary part.
 
Correct. But I have an important word-smithing note:
Throughout the entire post, you should put parentheses around all the angles that you take sins and cos of.
Not
$$=cos(n-1)\frac{\theta}{2}$$
but
$$=cos((n-1)\frac{\theta}{2})$$
 
FactChecker said:
Correct. But I have an important word-smithing note:
Throughout the entire post, you should put parentheses around all the angles that you take sins and cos of.
Not
$$=cos(n-1)\frac{\theta}{2}$$
but
$$=cos((n-1)\frac{\theta}{2})$$

Also: do not write ##sin \theta## and ##cos \theta## (ugly and hard to read); instead, write ##\sin \theta## and ##\cos \theta## (easy to read and looks good). To do it, just put a "\" before your sin or cos, so say "\sin" instead of "sin", etc. This holds as well for all the other trig functions, as well as 'log', 'ln', 'lim', 'max', 'min', 'exp' and several others.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
682
  • · Replies 9 ·
Replies
9
Views
818