Complex Roots - Not sure I did this right

  • Thread starter Thread starter Atena
  • Start date Start date
  • Tags Tags
    Complex Roots
Atena
Messages
1
Reaction score
0
Hello. I'm not sure whether I did this right or messed up somewhere, just need to confirm my results...thanks to anybody who bothers answering.

Homework Statement



Find all the roots of z^{4}=1-i

Homework Equations



I guess I should state De Moivre's here...

(r cis(\vartheta))^{n}=r^{n} cis (n\vartheta)

The Attempt at a Solution



Firstly I re-wrote z^{4}=1-i as

z^{4}=\sqrt{2} cis (\frac{-\pi}{4})

Using De Moivre's,

z=(2\frac{1}{2})^{\frac{1}{4}} cis (\frac{1}{4}(\frac{-\pi}{4}+k2\pi))

z=2\frac{1}{8} cis (\frac{1}{4}(\frac{-\pi}{4}+k2\pi))

I found the four roots letting k=0,1,2,3

z=2^\frac{1}{8} cis (\frac{-\pi}{16})

z=2^\frac{1}{8} cis (\frac{1}{4}(\frac{-\pi}{4}+2\pi))=2^\frac{1}{8} cis (\frac{7\pi}{16})

z=2^\frac{1}{8} cis (\frac{1}{4}(\frac{-\pi}{4}+4\pi))=2^\frac{1}{8} cis (\frac{15\pi}{16})

z=2^\frac{1}{8} cis (\frac{1}{4}(\frac{-\pi}{4}+6\pi))=2^\frac{1}{8} cis (\frac{23\pi}{16})
 
Physics news on Phys.org
Hi Atena!

Your answer is correct. You can check this by taking the fourth powers of the solutions you got (using deMoivre).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top