Compute the velocity of a free-falling parachutist using Euler's method

AI Thread Summary
The discussion focuses on computing the velocity of a free-falling parachutist using Euler's method, starting with an upward velocity of 20 m/s and transitioning to a drag coefficient of 1.5 kg/m after 10 seconds. Participants emphasize the importance of establishing a consistent sign convention for velocity and gravitational acceleration, noting that downward velocity can be considered positive or negative depending on the chosen convention. The drag force, which opposes the velocity, must also be correctly represented to ensure accurate calculations, particularly when the velocity changes direction. A suggested correction involves using a modified drag equation to account for the sign of the velocity. Overall, clarity in the mathematical approach and physical understanding is crucial for accurate results.
thornear
Messages
7
Reaction score
0

Homework Statement



For the second order drag model (Eq. 1.8), compute the velocity of a free-falling parachutist using Euler's method for the case where,

m = 80 kg
Cd = .25 kg/m

Perform the calculation from t = 0 to 20 with a step size of 1 s. Use an initial condition that the parachutist has an upward velocity of 20 m/s at t = 0. At t=10 s, assume that the chute is instantaneously deployed so that the drag coefficient jumps to 1.5 kg/m.

Homework Equations



Eq. 1.8,

dv/dt = g-((Cd)/m)*v2

The Attempt at a Solution



Used equation v(ti+1) = v(ti) + [g - (Cd/m)*v(ti)2](ti+1 - ti)v

(Used in example in book, unfortunately no example w/ an initial condition with an "upward velocity" though)

Plugged in the values to achieve,

t = 0... V = 20 + [9.81 - (.25/80)(0)2] *1 = 29.81m/s
t= 1...V = 29.81 + [9.81 - (.25/80)2]*1 = 36.51m/s
t =2....V=36.51 + [9.81-(.25/80)2]*1 = 42.15 m/s
...so on until t = 10 where Cd changes from .25 to 1.5

Am I doing this right? I don't know how the "upward velocity = 20" works into this. I assumed that it is the initial v(ti) as you can see from the first solution I have where t = 0, which may or may not be horribly wrong.

Thanks, much appreciated.
 
Physics news on Phys.org
Since you are representing an upward velocity as positive, you must have g as negative here. Try making g negative.
 
Making g negative makes sense to me but it begins to produce negative velocities. Also I made a mistake in the above post,

t = 0... V = 20 + [9.81 - (.25/80)(0)2] *1 = 29.81m/s
t= 1...V = 29.81 + [9.81 - (.25/80)2]*1 = 36.51m/s
t =2....V=36.51 + [9.81-(.25/80)2]*1 = 42.15 m/s
...so on until t = 10 where Cd changes from .25 to 1.5

Should read

t = 0... V = 20 + [9.81 - (.25/80)(0)2] *1 = 29.81m/s
t= 1...V = 29.81 + [9.81 - (.25/80)(29.81)2]*1 = 36.51m/s
t =2....V=36.51 + [9.81-(.25/80)(36.51)2]*1 = 42.15 m/s
...so on until t = 10 where Cd changes from .25 to 1.5

But in looking at that I realize perhaps that v(ti)2 should be 202 initially rather than 02.

Thoughts? Help?

Thanks
 
Let's step back and think about the math here, and the physics as well.

You initially have the parachutist going upwards. Gravitational acceleration is obviously directed downwards. You will need some sign convention on velocity and acceleration to handle this scenario. If you choose the sign convention such that downward velocity is positive, your value for g will be positive and your initial velocity will be negative. If you choose the sign convention such that upward velocity is positive, your value for g will be negative and your initial velocity will be positive.

That is not enough to cover this scenario. The other problem is drag. Drag is always directed against the velocity vector. If your velocity is positive (regardless of sign convention), the drag acceleration must be negative. If your velocity is negative, the drag acceleration must be positive. You have drag acceleration as - (c_d/m)v^2, so it is always negative. This is incorrect for negative velocities. One way to correct this is to compute the drag acceleration as - (c_d/m)(v^3/|v|).
 
  • Like
Likes Mohamed ismail
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top