Concentric Spheres Capacitance Question- How to use area

AI Thread Summary
To calculate the capacitance of concentric metal shells, the appropriate formula differs from that of parallel-plate capacitors. The capacitance of spherical capacitors requires a specific formula that accounts for the geometry of the shells. The area used in the capacitance calculation should correspond to the smaller shell, as it defines the effective area for the capacitor. The assumption of equal charge is relevant when using the formula C=Q/deltaV, but the capacitance formula itself does not directly incorporate charge. Understanding the correct formula for spherical capacitors is essential for solving the problem accurately.
swooshfactory
Messages
61
Reaction score
0

Homework Statement



I am trying to solve a question where I have three concentric metal shells at different radii. I am treating them as two capacitors in series. I would like to use the formula C= enot*area/distance between capacitors, but I have a few questions.



Homework Equations



(in next section)

The Attempt at a Solution



1. Which area would I use when computing the capacitance for between shells? I assume the smaller one, because I assume that if you put a small electrode over a larger electrode, the capacitor would only exist in the area between, making the smaller area the area to use.
2. Does this equation assume equal charge? No charge is used in the formula. However, the other formula I know for capacitance, C=Q/deltaV, would assume equal charge over both. Is this relevant for this problem?


Thanks for any help.
 
Physics news on Phys.org
HI swooshfactory,

swooshfactory said:

Homework Statement



I am trying to solve a question where I have three concentric metal shells at different radii. I am treating them as two capacitors in series. I would like to use the formula C= enot*area/distance between capacitors

This is the capacitance formula for a parallel-plate capacitor; a spherical capacitor would have a different formula. Once you find that formula (it should be in your textbook) you'll be able to answer your questions.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top