Conducting Spherical Shell Capacitor

BeBattey
Messages
59
Reaction score
6

Homework Statement


A conducting spherical shell is divided into upper and lower halves with a narrow insulating ring between them. The top half is at 10V and the bottom half is at -10V. Write down the appropriate expansion for Φ and use symmetry and the expected behavior at the origin to identify which coefficients are zero. Then solve for the nonzero coefficients which make Φ satisfy the values given at r = a. You will undoubtedly have to express the coefficients in integral form.


Homework Equations


No charge inside, so Laplace's equation applies:
\nabla^{2}\phi=0
Given the general solution for solving Laplaces equation in spherical coordinates:
\phi (r,\theta,\varphi)= \sum^{\infty}_{n=0}(A_{n}r^{n}+\frac{B^{n}}{r^{n+1}})P_{n}(cos\theta)

The Attempt at a Solution


I've only concluded so far that the B coefficients must all be 0 due to requiring finite potential at r=0. Past that I'm at a loss on how to tackle the function. I know:
\phi (r,\theta,\varphi)= \sum^{\infty}_{n=0}A_{n}r^{n}P_{n}(cos\theta)
But I don't know how I can tackle the boundary condition of plus and minus 10 at radius a, depending on angle theta.

Thanks in advance.
 
Physics news on Phys.org
Also I'm not quite sure which forum to put this in. It's a fourth year undergrad course, but all I've been told about the professor is that he gives us grad school type problems like this one, as previous graduates have come back and told us that their graduate EM course was actually easier.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top