MHB Confused about a couple of trig. identities.

Click For Summary
The discussion centers on proving the trigonometric identity Ccos(ω₀t - φ) = Asin(ω₀t) + Bcos(ω₀t), which the original poster finds challenging. They reference the cosine addition formula as a potential tool but struggle to see how to apply it effectively. A participant suggests that the constants A and B can be defined as A = Csin(φ) and B = Ccos(φ), indicating that the goal is to demonstrate the existence of such constants rather than to evaluate them. The conversation also touches on the Auxiliary Angle formula, hinting at alternative methods for solving the problem. Overall, the thread highlights the complexities of applying trigonometric identities in proofs.
skate_nerd
Messages
174
Reaction score
0
I've got this problem right now, which asks me to prove that
$$Ccos(\omega_{o}t-\phi)=Asin(\omega_{o}t)+Bcos(\omega_{o}t)$$
This proved to be a bit more difficult than I expected, so I looked up a complete list of trig identities.
$$cos(a\pm{b})=cos(a)cos(b)\mp{sin(a)sin(b)}$$
seems like the only one that could be helpful in my situation, however when I try to think of a way where the original equation makes sense, I am really not able to convince myself.
Wouldn't the only way for the original equation to make sense be if
\(sin(\phi)=cos(\phi)=1\)? As far as I know this is only possible for \(\frac{-3\pi}{4}\).
Kind of stuck here, any help would be very appreciated
 
Mathematics news on Phys.org
Re: confused about a couple trig identities.

skatenerd said:
I've got this problem right now, which asks me to prove that
$$Ccos(\omega_{o}t-\phi)=Asin(\omega_{o}t)+Bcos(\omega_{o}t)$$
This proved to be a bit more difficult than I expected, so I looked up a complete list of trig identities.
$$cos(a\pm{b})=cos(a)cos(b)\mp{sin(a)sin(b)}$$
seems like the only one that could be helpful in my situation, however when I try to think of a way where the original equation makes sense, I am really not able to convince myself.
Wouldn't the only way for the original equation to make sense be if
\(sin(\phi)=cos(\phi)=1\)? As far as I know this is only possible for \(\frac{-3\pi}{4}\).
Kind of stuck here, any help would be very appreciated

I am 90% positive I have shown this in my classical mechanics notes in the forum's notes section. They aren't completed so it should be easy to find.
 
Re: confused about a couple trig identities.

skatenerd said:
I've got this problem right now, which asks me to prove that
$$Ccos(\omega_{o}t-\phi)=Asin(\omega_{o}t)+Bcos(\omega_{o}t)$$
This proved to be a bit more difficult than I expected, so I looked up a complete list of trig identities.
$$cos(a\pm{b})=cos(a)cos(b)\mp{sin(a)sin(b)}$$
seems like the only one that could be helpful in my situation, however when I try to think of a way where the original equation makes sense, I am really not able to convince myself.
Wouldn't the only way for the original equation to make sense be if
\(sin(\phi)=cos(\phi)=1\)? As far as I know this is only possible for \(\frac{-3\pi}{4}\).
Kind of stuck here, any help would be very appreciated

I agree with what you are thinking. Using the identity you have been given

\displaystyle \begin{align*} C\cos{ \left( \omega_ot - \phi \right)} &= C \left[ \cos{ \left( \omega_ot \right)}\cos{ \left( \phi \right) } + \sin{\left( \omega_ot \right) } \sin{\left( \phi \right) } \right] \\ &= C\sin{\left( \phi \right) } \sin{\left( \omega_ot \right) } + C\cos{\left( \phi \right)} \cos{\left( \omega_ot \right) } \\ &= A\sin{\left( \omega_ot \right) } + B \sin{ \left( \omega_ot \right) } \end{align*}

where \displaystyle \begin{align*} A = C\sin{(\phi)} \end{align*} and \displaystyle \begin{align*} B = C\cos{(\phi)} \end{align*}. Here you're not expected to be able to evaluate these constants, you're just expected to show that there ARE some constants that exist which would satisfy your identity.
 
Re: confused about a couple trig identities.

$\LaTeX$ tip:

Precede trigonometric/logarithmic functions with a backslash so that their names are not italicized as if they are strings of variables. For example:

sin(\theta) produces $sin(\theta)$

\sin(\theta) produces $\sin(\theta)$
 
Re: Confused about a couple trig identities.

Hi Skatenerd! :D

Have you come across the Auxiliary Angle formulae - from trigonometry - before...?

$$A\cos x+ B\sin x=\sqrt{A^2+B^2}\cos(x\pm\varphi)\quad ; \, \varphi=\tan^{-1}\left(\mp \frac{B}{A}\right) $$$$A\cos x+ B\sin x=\sqrt{A^2+B^2}\sin(x\pm\varphi)\quad ; \, \varphi=\tan^{-1}\left(\pm \frac{A}{B}\right) $$

Incidentally, I just posted a thread in the Puzzles Board that might be of interest...

http://mathhelpboards.com/challenge-questions-puzzles-28/auxiliary-angle-proof-6759-new.html
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 17 ·
Replies
17
Views
6K
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
862
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
Replies
54
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
32
Views
3K
Replies
4
Views
1K