Confused About Boundary Conditions for ##y## and ##x##

Click For Summary
SUMMARY

The discussion focuses on the boundary conditions for the partial differential equation (PDE) represented by ##u_t = k u_{xx} - u##. The participants clarify that there are two homogeneous boundary conditions for ##y## and one inhomogeneous condition for ##x##. The conditions are specified as ##u(0,t) = 0## and ##-u_x(L,t) = u(L,t)##. The solution approach involves separating variables with the assumption ##u(x,t) = XT##, leading to two ordinary differential equations that must be solved under the given boundary conditions.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with boundary value problems
  • Knowledge of separation of variables technique
  • Basic concepts of homogeneous and inhomogeneous boundary conditions
NEXT STEPS
  • Study the method of separation of variables in depth
  • Learn about solving boundary value problems for PDEs
  • Explore the implications of homogeneous vs. inhomogeneous boundary conditions
  • Investigate the characteristics of the heat equation and its applications
USEFUL FOR

Mathematicians, physicists, and engineers working with partial differential equations, particularly those involved in heat transfer and boundary value problems.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
Kindly see attached.
Relevant Equations
separation of variables and basic knowledge on boundary and initial conditions
I am going through this notes, i can follow quite well...my only issue is on the highlighted part...i thought that we had two boundary conditions for ##y## ( of which one of them is non homogenous) and two boundary conditions for ##x##( of which both are homogenous)...kindly clarify on this part...

1639114732179.png
1639115124985.png
 
Physics news on Phys.org
Here is my working on the given homogenous boundary conditions,
Let ## U(x,y) = X⋅Y##
1. Given, ##u(x,0)= 0##, then it follows that,
##0=X(x) Y(0)## →##Y(0)=0##

2. Given, ##u(L,y)= 0##, then it follows that,
##0=X(L) Y(y)## →##X(L)=0##

3. Given, ##u(x,H)= 0##, then it follows that,
##0=X(x) Y(H)## →##Y(H)=0##

The remaining steps to solution will follow accordingly...
 
Last edited:
You have two homogeneous boundary conditions on y and one on x. The second boundary condition on x is inhomogeneous.
 
  • Like
Likes   Reactions: chwala
Orodruin said:
You have two homogeneous boundary conditions on y and one on x. The second boundary condition on x is inhomogeneous.
Thanks i got a little mixed up there,...from my opening remarks on post ##1##, the boundary conditions for ##x## and ##y## ought to be the way you've indicated...and not other way round. Cheers...
 
...also for the problem below, which is quite related to the original post;

Note
Kindly note that i share this so that when it comes to solving pde related problems in future then atleast you guys will have an understanding of my approach )...cheers guys.

1639123599326.png


1639123622685.png


Ok here, we have,
##u_t=k u_{xx} - u## given the initial condition, ##u(x,0)= f(x)## and boundary conditions, ##u(0,t)=0## and ##-u_x(L,t)=u(L,t)## then,

Let ##u(x,t)= XT##
##u_t= XT^{'}##
##u_{xx}= X^{''}T##
on substitution to the pde, we shall have,
##XT^{'}##=##kX^{''}T-XT##
...
##\frac {T^{'}}{T}##=##\frac {kX^{''}-X}{X}##=##-λ##
##\frac {T^{'}}{T}##+##1##=##\frac {kX^{''}}{X}##=##-λ##
##→\frac {1}{k}##[##\frac {T^{'}}{T}##+##1##]=##\frac {X^{''}}{X}##=##-λ## (two ordinary differential equations realized)...
Now when it comes to the boundary conditions, we know that,
##u(x,t)= XT##
1. ##u(0,t)= 0##
→##0=X(0)T(t)##, ##T(t) ≠0## →##X(0)=0##

2. ##u(L,t) + u_x(L,t)=0##
##X(L)T(t) +X^{'}(L)T(t)=0##
since##X(0)##=##0## →##X(L)=X^{'}(L)##=##0##

bingo:cool:
 
Last edited:

Similar threads

Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K