Conjugate of a matrix and of a function

DeepSeeded
Messages
113
Reaction score
1
Hello,

Working without complex numbers a conjugate of any function in a LVS is always the same thing. A conjugate of any matrix in a LVS is very often not the same thing though. I am just confused as to why functional spaces rely on complex numbers for the conjugate to have any importance and a matrix does not.
 
Physics news on Phys.org
Where did you see that? The "conjugate" of a matrix is just the matrix with the entries replaced by there complex conjugates. If M is a matrix with all real entries then the conjugate of M is just M itself.

You may be confusing "conjugate" with the "conjugate transpose" or "Hermitian transpose" of a matrix: swap rows and columns and take the conjugate of each entry. Of course, if M has all real entries, it "conjugate transpose" is just its transpose.
 
Last edited by a moderator:
HallsofIvy said:
Where did you see that? The "conjugate" of a matrix is just the matrix with the entries replaced by there complex conjugates. If M is a matrix with all real entries then the conjugate of M is just M itself.

You may be confusing "conjugate" with the "conjugate transpose" or "Hermitian transpose" of a matrix: swap rows and columns and take the conjugate of each entry. Of course, if M has all real entries, it "conjugate transpose" is just its transpose.

So guess my question is if functions are a different represenation of a matrix why is there no option to transpose a function?
 
In what sense is a function a "different representation of a matrix"? Are you talking about representing linear functions represented by a matrix?
 
Last edited by a moderator:
In my QM class Operator functions are said to be like a matrix.
 
I don't fully understand your question, but maybe you'd like to hear about the adjoint of a linear transformation.

Let V,W be inner-product spaces, let T\in L(V,W) be a linear transformation, and T^*\in L(W,V) its adjoint. This means that \langle Tv,w \rangle=\langle v,T^*w \rangle for all v\in V,w\in W. Then, the matrix of T^* with respect to orthonormal bases of V and W is just the conjugate transpose of the matrix of T with respect to these bases. As mentioned earlier, the conjugate transpose of a matrix is just the transpose (interchange rows and colums) of the matrix with all entries replaced by their complex conjugates.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top