Conjugates in exponential form

  • Thread starter Thread starter shannon
  • Start date Start date
  • Tags Tags
    Exponential Form
shannon
Messages
11
Reaction score
0

Homework Statement


Show that (ez)*=ez*

note: * is the conjugate


Homework Equations





The Attempt at a Solution


So I wasn't sure what form to put this in...either in exponential re or cos Ѳ + isin Ѳ...Either way, I think I'm just making it too easy...
Please help!
 
Physics news on Phys.org
you could write z = x + iy and use (z z`)* = z* z`*
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top