Constant Acceleration -- Equation for Vavge

AI Thread Summary
The discussion clarifies the derivation of the average velocity equation, Vav = (v0 + v)/2, under constant acceleration conditions. It emphasizes that when acceleration is constant, the velocity-time graph is linear, allowing the average velocity to be calculated as the arithmetic mean of the initial and final velocities. A graphical representation illustrates that the average height of the velocity line corresponds to this average. Additionally, algebraic derivations confirm the equivalence of the average velocity expressions, reinforcing their validity in the context of uniform acceleration. Understanding these concepts is crucial for applying them in physics problems effectively.
Danger Mouse
Messages
2
Reaction score
0
Homework Statement
I've recently started Sears and Zemansky's "University Physics"... Everything was fine until pg. 42.
Relevant Equations
...
Initially we are given the statement Vav = (x-x0)/t, so far so good. But, we encounter the following paragraph...

"We can also get a second expression for Vav that is valid only when the acceleration is constant, so that the v-t graph is a straight line (as in Fig 2-14 - [I've omitted the graph here, it's a v-t graph with constant acceleration]) and the velocity changes at a constant rate. In this case the average velocity during any time interval is imply the arithmetic average of the velocities at the beginning and end of the interval."

For the time interval from 0 to t:

Vav = (v0 + v)/2

I can't for the life of me figure out where the above equation comes from.

My Apologies if homework is the wrong place for this.
 
Physics news on Phys.org
How would you calculate an arithmetic average of two numbers, let's say 10 and 20?
 
Danger Mouse said:
Homework Statement:: I've recently started Sears and Zemansky's "University Physics"... Everything was fine until pg. 42.
Homework Equations:: ...

Initially we are given the statement Vav = (x-x0)/t, so far so good. But, we encounter the following paragraph...

"We can also get a second expression for Vav that is valid only when the acceleration is constant, so that the v-t graph is a straight line (as in Fig 2-14 - [I've omitted the graph here, it's a v-t graph with constant acceleration]) and the velocity changes at a constant rate. In this case the average velocity during any time interval is imply the arithmetic average of the velocities at the beginning and end of the interval."

For the time interval from 0 to t:

Vav = (v0 + v)/2

I can't for the life of me figure out where the above equation comes from.

My Apologies if homework is the wrong place for this.
The easiest way to see it is graphically. Draw a graph of velocity against time. It will be a straight line from height v0 to height v1. The average height is (v0 + v1)/2.
(The distance covered is the area underneath.)
 
They're just giving it to you as an unproven theorem. Even though average velocity is emphatically NOT defined as the average of the start and end velocities in general, in the case of uniform acceleration they are the same.

You can prove it graphically as another answer suggests. You can also derive it algebraically from the equations of uniform acceleration.

##v = v_0 + at \Rightarrow at = v - v_0##

##d = v_0t + (1/2)at^2##

So ##v_{avg} = d/t = v_0 + (1/2)at = v_0 + (1/2)(v - v_0) = (1/2)(v + v_0)##
 
  • Like
Likes gmax137
These expressions are equivalent. Perhaps it will help you to see how.

Recall that:

##a=constant \implies v(t)=at+v_0 \implies x(t) = \frac{at^2}{2} + v_0t + x_0 \tag{1}##

Now the first expression for the average velocity is:

##\frac{x_2-x_1}{t_2-t_1}\tag{2}##

If we use the third expression in (1) for the x values in (2), then this gives:

##\frac{\frac{a t_2^2}{2} + v_0t_2 + x_0 -\left(\frac{a t_1^2}{2} + v_0t_1 + x_0\right)}{t_2-t_1}\tag{3}##

This simplifies to:

##\frac{\frac{a }{2}(t_2^2 - t_1^2) + v_0(t_2-t_1)} {t_2-t_1}\tag{4}##

Now consider the second expression you give for the average velocity:

##\frac{v_1 + v_2}{2}\tag{5}##

If we use the second expression in (1) for the velocity values in (5), then we have:

##\frac{at_1 +v_0+ at_2 + v_0}{2} = \frac{a(t_1 + t_2)+ 2v_0}{2} = \frac{a(t_1 + t_2)+ 2v_0}{2} \cdot \frac{t_2-t_1}{t_2-t_1} = \frac{\frac{a }{2}(t_2^2 - t_1^2) + v_0(t_2-t_1)} {t_2-t_1}\tag{6} ##

So the expressions (4) and (6) are equivalent, and therefore they both represent the average velocity over some time interval given constant acceleration.

HTH
 
Last edited:
  • Like
Likes Danger Mouse
Thanks! It does...
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top