Constant pressure process (piston) on gas violates Newtons 2nd law?

Click For Summary
SUMMARY

The discussion centers on the application of Newton's Laws to a constant pressure quasi-equilibrium process involving a gas in a piston cylinder. Participants clarify that while the piston initially experiences no net force at rest, the heating of the gas leads to a temporary increase in pressure, resulting in an acceleration of the piston. The conversation emphasizes that the process is an abstraction, simplifying real-world dynamics where initial and final accelerations must be considered. Ultimately, the gas does work on the piston, and the oscillation of the piston is a result of pressure changes during the heating process.

PREREQUISITES
  • Understanding of Newton's Laws of Motion
  • Familiarity with thermodynamic processes, specifically quasi-equilibrium
  • Knowledge of gas laws and pressure-volume relationships
  • Basic principles of work and energy in physics
NEXT STEPS
  • Explore the concept of quasi-static processes in thermodynamics
  • Study the relationship between pressure, volume, and temperature in ideal gases
  • Learn about the dynamics of piston-cylinder systems in real-world applications
  • Investigate the effects of friction and inertia in mechanical systems
USEFUL FOR

Students of physics, engineers working with thermodynamic systems, and anyone interested in the practical applications of Newton's Laws in fluid mechanics and gas dynamics.

questionmonkey123
Messages
3
Reaction score
0
Screen Shot 2021-10-01 at 7.18.34 PM.png


I often see this set up in thermodynamic problems and need clarification on how Newton's Laws are involved for the piston:

Gas inside a piston cylinder (1) is heated expanding the gas and raising the piston (initially at rest) to a height (2) in a constant pressure quasi-equilibrium process. At (2) the piston is also at rest, thus the FBD at (1) and (2) are the same.

My understanding: In order for piston to travel to any height from initial rest, there is acceleration involved thus a net force. The only forces on the piston are the ones shown (for any point in the process), and the gas pressure is constant throughout the process so there is never a net force to move the piston up from rest.
How is this type of problem justified in terms of Newton's laws? What assumptions am I overlooking?
 
Engineering news on Phys.org
When you think of NOT force BUT work or energy, gas inside the cylinder did work of ##p_1 Ah##.
Constant pressure quasi-equilibrium process is not constant pressure equilibrium.
 
Last edited:
  • Like
Likes   Reactions: sophiecentaur
anuttarasammyak said:
When you think of NOT force BUT work or energy, gas inside the cylinder did work of ##p_1 Ah##.
But how does this clarify acceleration with no net force? I already know how to calculate work.
 
When you heat gas its pressure goes up slightly ##\triangle p## which make force imbalance and the piston moves up. By gas inflation its pressure goes down back to ##p_1## and the piston oscillates and ceases oscillating in a long time transferring all kinetic energy to potential energy and stops at ##\triangle h## up for there is no loss of energy or heat generation for a reversible process. Such an infinitesimal process is repeated infinite times for the final piston height.
 
Last edited:
  • Like
Likes   Reactions: Lnewqban
At state 1:
$$\left(P_1 - P_0\right)A = mg$$
After heating, the pressure increases by ##\Delta P##:
$$\left(\left(P_1 + \Delta P\right) - P_0\right)A = m(g + a)$$
And the acceleration ##a## depends on ##\Delta P##.

But as soon as the piston moves, the pressure decreases because the volume increases. Eventually, ##\left(P_1 + \Delta P\right)## will go back to ##P_1## and ##a## will go back to zero. The only difference is that the volume and temperature have increased.
 
What happens in cases of abrupt increase of internal pressure?

 
questionmonkey123 said:
The only forces on the piston are the ones shown (for any point in the process), and the gas pressure is constant throughout the process so there is never a net force to move the piston up from rest.
How is this type of problem justified in terms of Newton's laws? What assumptions am I overlooking?
Assuming a frictionless system, the piston still has inertia and resists moving when the gas is first heated. Thus the gas is initially at a higher pressure than it will be later, as jack action explained in post #5.
 
The simple answer here is that the given example is a simplified abstraction of what would actually occur in such a situation. Of course in the real world you would need some initial (and final) acceleration and this whole process is transient, but the purposes of problems like this are perfectly well-served by neglecting those details.
 
  • Like
Likes   Reactions: Drakkith

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
2K
  • · Replies 22 ·
Replies
22
Views
6K
  • · Replies 60 ·
3
Replies
60
Views
10K
Replies
49
Views
3K