Continuously differentiable function

Lee33
Messages
156
Reaction score
0

Homework Statement



Show that if ##f## is a continuously differentiable real valued function on an open interval in ##E^2## and ##\partial^2f/\partial x\partial y=0,## then there are continuously differentiable real-valued functions ##f_1,f_2## on open intervals in ##\mathbb{R}## such that ##f(x,y)=f_1(x)+f_2(y).##

How can I prove this?

Homework Equations



None

The Attempt at a Solution



Let ##(x_0,y_0)\in E^2## and integrate twice:

##0=\int_{y_0}^y\int_{x_0}^x\partial_x(\partial_yf(x',y'))dx'dy'=\int_{y_0}^y(\partial_yf(x,y')-\partial_yf(x_0,y'))dy'=f(x,y)-f(x,y_0)-f(x_0,y)+f(x_0,y_0).##
 
Physics news on Phys.org
This looks fine. Was there any problem with this?
 
  • Like
Likes 1 person
Nope, I was just confirming. Thanks for confirming!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top