Ted123
- 428
- 0
Homework Statement
The Attempt at a Solution
We can parametrise the contour \gamma (the positively oriented unit circle) by \gamma(t) = e^{it} for t \in [0, 2\pi ]
So by the definition of a contour integral
\displaystyle I = \frac{1}{2\pi i} \int^{2\pi}_0 \frac{2e^{it}}{e^{2it} + w^2} ie^{it} \; dt
\displaystyle \;\;\;= \frac{1}{\pi} \int^{2\pi}_0 \frac{e^{2it}}{e^{2it} + w^2} \; dt
How do I evaluate this?