Contour Integrals: Show \int_{0}^{2\pi} e^{i \theta}f(e^{i \theta}) d\theta=0

  • Thread starter Thread starter csnsc14320
  • Start date Start date
  • Tags Tags
    Integrals
csnsc14320
Messages
57
Reaction score
1

Homework Statement


If f(z) is analytic on and inside |z|=1, show \int_{0}^{2\pi} e^{i \theta}f(e^{i \theta}) d\theta = 0


Homework Equations



Cauchy's theorem: \oint f(z)dz=0

The Attempt at a Solution



I'm not really sure what to do here except setting z=e^{i\theta} and plugging in, but then i don't know what to do with the d\theta or how to make it look more like Cauchy's theorem :-\
 
Physics news on Phys.org
If z=e^(i*theta), what's dz?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top