wanchosen
- 19
- 0
I am having problems with the following question:
Using an appropriate convergence test, find the values of x \in R for which the following series is convergent:
(\sumnk=1 1/ekkx)n
I used the ratio test to solve this but I'm not so sure about my solution:
n1 = \frac{1}{e}
n2 = \frac{1}{e} + \frac{1}{e^2 * 2^x}
n3 = \frac{1}{e} + \frac{1}{e^2 * 2^x} + \frac{1}{e^3 * 3^x}
n4 = \frac{1}{e} + \frac{1}{e^2 * 2^x} + \frac{1}{e^3 * 3^x} + \frac{1}{e^4 * 4^x}
\sum all n = \frac{n}{e} + \frac{n-1}{e^2*2^x} + \frac{n-2}{e^3*3^x}
So,
Un = \sumnn=1 \frac{n-(k-1)}{e^k*k^x} = \frac{n-(k-1)}{e^n*n^x}
Un+1 = \sumnk=1 \frac{(n+1)-(k-1)}{e^n*n^x} = \frac{n-k+2}{e^(n+1) * (n+1)^x}
n-->\infty
Un+1/Un = \frac{(n-k+2)n^x}{(n-k+1)*(n+1)^x}
divide by n
= \frac{((1-(k/n))n^(x-1)}{(1-(k/n)+(1/n)*((n+1)^x)/n}
Lim\infty nx-1 if convergent
|nx-1| < 1
so,
x-1 < 0
x < 1
Does this look right?
Using an appropriate convergence test, find the values of x \in R for which the following series is convergent:
(\sumnk=1 1/ekkx)n
I used the ratio test to solve this but I'm not so sure about my solution:
n1 = \frac{1}{e}
n2 = \frac{1}{e} + \frac{1}{e^2 * 2^x}
n3 = \frac{1}{e} + \frac{1}{e^2 * 2^x} + \frac{1}{e^3 * 3^x}
n4 = \frac{1}{e} + \frac{1}{e^2 * 2^x} + \frac{1}{e^3 * 3^x} + \frac{1}{e^4 * 4^x}
\sum all n = \frac{n}{e} + \frac{n-1}{e^2*2^x} + \frac{n-2}{e^3*3^x}
So,
Un = \sumnn=1 \frac{n-(k-1)}{e^k*k^x} = \frac{n-(k-1)}{e^n*n^x}
Un+1 = \sumnk=1 \frac{(n+1)-(k-1)}{e^n*n^x} = \frac{n-k+2}{e^(n+1) * (n+1)^x}
n-->\infty
Un+1/Un = \frac{(n-k+2)n^x}{(n-k+1)*(n+1)^x}
divide by n
= \frac{((1-(k/n))n^(x-1)}{(1-(k/n)+(1/n)*((n+1)^x)/n}
Lim\infty nx-1 if convergent
|nx-1| < 1
so,
x-1 < 0
x < 1
Does this look right?