Converting standard to polar form

AI Thread Summary
To convert the complex number z = 3 - 3i to polar form, the modulus is calculated as r = 3√2, while the angle θ can be found using the coordinates (3, -3). The angle θ is debated, with some sources suggesting -45° (or -π/4) and others proposing 315° (360° - 45°). For the complex number z = -8i, the angle is confirmed to be 270° (or 3π/2), as the tangent function is undefined for this case. The discussion emphasizes the importance of understanding angle conventions and visualizing the problem rather than relying solely on inverse trigonometric functions.
Arnoldjavs3
Messages
191
Reaction score
3

Homework Statement


you are given the standard form z = 3 - 3i

Homework Equations

The Attempt at a Solution


so to convert this to polar form, i know that ##r = 3√2## but how do i find theta here? There are so many mixed answers it seems online that I can't tell... i know that ##(3,-3)## is in the last quadrant and that ##tan^-1(-3/3) = -45##.

But how can I do this all without a calculator first of all? I have a final where no calculators are allowed. Some sites are telling me that theta is just -45 or -pi/4 here. Others are telling me that its 360 - (-45) or 360 + -45.
What the heck is the right answer?

Also, just for my understanding here. say I have a different standard form where ##z=-8i## and I want to find its cubed roots. Would theta be 270 here? or ##3pi/2##? Because ##tan^-1(-8/0)## is undefined.
 
Last edited:
Physics news on Phys.org
Arnoldjavs3 said:
Some sites are telling me that theta is just -45 or -pi/4 here. Others are telling me that its 360 - (-45) or 360 + -45.
Hi Arnoldjavs3:

What is the difference between the two answers: (a) -45, and (b) 360-45=315.

BTW: I don't know what your teacher requires, but in general it is better to include a symbol like "o" or "deg" for an angle using degrees as a unit rather than omit it.

Regards,
Buzz
 
  • Like
Likes Arnoldjavs3
Buzz Bloom said:
Hi Arnoldjavs3:

What is the difference between the two answers: (a) -45, and (b) 360-45=315.

BTW: I don't know what your teacher requires, but in general it is better to include a symbol like "o" or "deg" for an angle using degrees as a unit rather than omit it.

Regards,
Buzz

Oh... right. I didn't know how to add the degree symbol with latex. I feel stupid now.

How about the degree for ##z=-8i##? Am I right to think that it is 270o?
 
Arnoldjavs3 said:

Homework Statement


you are given the standard form z = 3 - 3i

Homework Equations

The Attempt at a Solution


so to convert this to polar form, i know that ##r = 3√2## but how do i find theta here? There are so many mixed answers it seems online that I can't tell... i know that ##(3,-3)## is in the last quadrant and that ##tan^-1(-3/3) = -45##.

But how can I do this all without a calculator first of all? I have a final where no calculators are allowed. Some sites are telling me that theta is just -45 or -pi/4 here. Others are telling me that its 360 - (-45) or 360 + -45.
What the heck is the right answer?

Draw a line from the origin to ##(3,-3)##. Label it ##r##. Then draw an arc counterclockwise from the positive ##x## axis to ##r##. That arc subtends the angle you want. Don't use any inverse trig formula, just look at it. You should see that it is ##180^\circ + 45^\circ## or ##\pi +\frac \pi 4 =\frac{5
\pi} 4##. Just draw a quick picture for this kind of problem.
[Edit, corrected] As Mark44 points out in post #6, I meant
##270^\circ + 45^\circ## or ##\frac{3\pi} 2 +\frac \pi 4 =\frac{7
\pi} 4##.
Also, just for my understanding here. say I have a different standard form where ##z=-8i## and I want to find its cubed roots. Would theta be 270 here? or ##3pi/2##? Because ##tan^(-1)[-8/0]## is undefined.
Again, don't use inverse trig functions here. You want$$
r^3e^{i3\theta} = 8e^{\frac {3\pi i} 2}$$ So ##r=2## and ##3\theta = \frac {3\pi} 2 + 2n\pi##.
 
Last edited:
  • Like
Likes Arnoldjavs3
Arnoldjavs3 said:
How about the degree for z=-8i?
Hi Arnoldjavs3:

What do you think the answer is?

BTW: How to represent the value of an angle in the third or fourth quadrant is an arbitrary convention. The two choices are
(a) 180 < θ < 360, or
(b) 0 > θ > - 180.
You might want to notice which convention your teacher usually uses, and do the same.

Another BTW re
Arnoldjavs3 said:
I didn't know how to add the degree symbol with latex. I feel stupid now.
There are many useful symbols available by selecting "∑" on the formatting option bar.

Regards,
Buzz
 
Last edited:
LCKurtz said:
Draw a line from the origin to ##(3,-3)##. Label it ##r##. Then draw an arc counterclockwise from the positive ##x## axis to ##r##. That arc subtends the angle you want. Don't use any inverse trig formula, just look at it. You should see that it is ##180^\circ + 45^\circ## or ##\pi +\frac \pi 4 =\frac{5
\pi} 4##. Just draw a quick picture for this kind of problem.
@LCKurtz, I'm sure you really mean ##270^\circ + 45^\circ## or ##\frac {3\pi} 2 + \frac \pi 4 = \frac{7\pi} 4##.
LCKurtz said:
Again, don't use inverse trig functions here. You want$$
r^3e^{i3\theta} = 8e^{\frac {3\pi i} 2}$$ So ##r=2## and ##3\theta = \frac {3\pi} 2 + 2n\pi##.
 
Mark44 said:
@LCKurtz, I'm sure you really mean ##270^\circ + 45^\circ## or ##\frac {3\pi} 2 + \frac \pi 4 = \frac{7\pi} 4##.
Yes, of course. For some reason I copied his point as ##(-3,-3)##.
 
Back
Top