Coordinate Transformations Question

mjb
Messages
2
Reaction score
0
Hi there. This isn't so much a math question as it is a conceptual question. I can't seem to wrap my head around the need for coordinate transformations. *Why* do they need to be done? I think I really need a picture for this, so this might not be the right place to ask, but if you can describe the "why" rather than the "how" that I find in all the papers/books I've found, that would be great.
Basically, the problem that I'm working on is a plane with a camera on a motorized gimbal. This gimbal needs to point to a spot on the ground and remain pointed to that spot as the plane flies through space. So, the first step is to convert the Lat/Lon into ECEF coordinates to get cartesian math. Get that part, no problem. My question is, why can't I just calculate the vector between these two points and call it a day? From everything I've read, I need to rotate the plane's coordinate system to align with the Earth's coordinate system using matrix transformations. But then, if the plane is now "tipped" to be on the same "axes" as the target, and I calculate the vector, it still won't be correct because the plane isn't really tipped! Please forgive me if I'm being rather obtuse here, but any insight that you can give me would be much appreciated.
thanks!
 
Physics news on Phys.org
I've done this very thing in a computer program I made. Essentially you should simply create a matrix using an eye vector and then you have to create an "up" vector. You can
create a matrix using an eye vector and use the z axis as your up vector and then reorthonormalize the matrix, using the calculated binormal and the lookat vector.

There are tonnes of examples on the internet but essentially its going to result in
normalizing the lookat vector, taking a cross product between y-axis and lookat
vector and then calculating the up vector from the binormal and the lookat vector.

Hope that helps
 
Well, in thinking about it more I think I may have figured it out. Forgive me while I think "aloud". After converting the aircraft and target locations to ECEF coordinates, you subtract them to get the vector between them. BUT that vector is only the straight line distance between the two points. It doesn't take into account the orientation of the aircraft, which may very well be pitch up 25 degrees and banked 10 degrees. Therefore to get the new "coordinates" of the target, with respect to the planes' attitude, the transformation needs to be done to get them in the same "plane" (no pun intended ;P ). Any confirmation or correction of this thought is appreciated. thanks.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top