How to Use the Half-Angle Formula for (cosx)^2?

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Angle Formula
nameVoid
Messages
238
Reaction score
0
y=sin2x bounded by x=0,x=pi,y=0 , revolved around the x-axis

cross section A=pi(sin2x)^2

latex2png.2.php?z=100&eq=pi%5Cint_%7B0%7D%5E%7Bpi%2F2%7D%20(sin(2x))%5E2.jpg


latex2png.2.php?z=100&eq=4pi%5Cint_%7B0%7D%5E%7Bpi%2F2%7Dsin%5E2xcos%5E2x.jpg

taking u = sinx ; du=cosxdx

im unclear on how to proceed in this case where du needs to satisfy (cosx)^2
the problem hints to use a half angle formula
 
Physics news on Phys.org


Try the identity cos(2x) = 1 - 2sin2(x). It can be rearranged to be a half-angle formula. :smile:
 


still i am unclear on how to proceed here
 


nameVoid said:
still i am unclear on how to proceed here

Try using the Pythagorean identity to get sin2(x) - sin4(x), then apply the half angle formula to get cosines (twice for the second term) that are not squared.
 


slider142 is trying to say that since sin^2(x)=(1-cos(2x))/2, sin^(2x)=(1-cos(4x))/2. That's pretty easy to integrate.
 


perfect
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top