Cramers rule on a set of linear equations, notation help

Missmk1
Messages
2
Reaction score
0

Homework Statement



I don't have a particular problem to solve, but I need help with understanding the notation I have found in an academic paper.

I have a system of linear equations which each take the form:

pi xi r1 + pi yi r2 - pi u + qi xi r4 + qi yi r5 - qi v + xi x + yi y - w/2 + mi = 0 (for i=1-6)


Where mi=((Li)^2- (xi)^2- (yi)^2- (pi)^2- (qi)^2 )/2

u=r1x+r2y+r3z
v=r4x+r5y+r6z
w= x^2+ y^2+ z^2

Where: pi, qi, xi, yi, Li and mi are all known quantities.

The paper outlines a method to solve for r1, r2, r4, r5, v, u, w, x, y, z


Homework Equations


The paper enters the equations into a 6 x10 matrix and called this matrix 'M'

The following equation then holds true:

M * t = 0

Where t is a 10 x 1 matrix

t = [r1; r2; u; r4; r5; v; x; y; z; 1]

(so all variables in the 'M' matrix are known and we are solving for the variables in the 't' matrix)

The paper then goes on to say that we can solve the system of equations symbolically using Cramer algorithm, regarding r1,r2,r4,r5,u,v as linear unknowns, and obtain the following expressions of those variables with respect to x,y,z.

a0r1 + a11x + a12y + a13w + a14 = 0
a0r2 + a21x + a22y + a23w + a24 = 0
a0u + a31x + a32y + a33w + a34 = 0
a0r4 + a41x + a42y + a43w + a44 = 0
a0r5 + a51x + a52y + a53w + a54 = 0
a0v + a61x + a62y + a63w + a64 = 0

Where

a0 = det(c1,c2,c3,c4,c5,c6)

And

aij = det(c1,...,ci-1,cj+6,ci+1,...,c6)


Now this is where I am getting stuck.

I am unsure of exactly what the last line of notation above means.


The Attempt at a Solution



I understand that a0 is equal to the determinant of the matrix 'M' when it is reduced to M(6x6).

But what exactly does the next line mean? I don't know how to calculate the coefficients aij.

If was looking for the coefficient a11 for instance would this constitute the following matrix:

aij = det(c1,...,ci-1,cj+6,ci+1,...,c6)
a11 = det(c1,..., c0,c7,c2,...,c6) ?

There is no column C0 is there? And I'm unsure of what columns of the matrix go into the two gaps.

Could somebody please help, I'm sure this must be relatively easy for somebody who works with this notation all the time, but I don't understand.

Thank you

MissMk1
 
Physics news on Phys.org
Missmk1 said:
aij = det(c1,...,ci-1,cj+6,ci+1,...,c6)
a11 = det(c1,..., c0,c7,c2,...,c6) ?

There is no column C0 is there?
I can answer that part. In this case, it would simply mean that the lead-in sequence is empty:
a11 = det(c7,c2,...,c6)
 
Thank you!

I think I understand it now

Thanks for your reply :)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top